
 

A Procedure for Obtaining a Behavioral Description for the Control Logic of a 
Non-Linear Pipeline

 
Hashem Hashemi Najaf-Abadi 

 

Department of Computer Engineering 
Sharif University of Technology 

Tehran, Iran, P.O. Box: 11365-9363 
Tel: +21-737-6547 

e-mail: h_hashemi@ce.sharif.edu 
 

  
Abstract-- Much attention has been directed to different aspects 
of the design of pipelines [1,2,3,4]. Design of the control logic of 
non-linear pipelines has however, been considered as a 
subsidiary issue in that an RTL description for such logic can 
easily be obtained from a behavioral description, with the use of 
widely available synthesis tools. But, as the complexity of a non-
linear pipeline increases, so does the complexity of the control 
logic. The complexity may be to an extent that obtaining even a 
behavioral description for the control logic is rendered difficult. 
This paper focuses on further automating the development of 
systems consisting of non-linear or multi-function pipelines by 
proposing an algorithmic technique for obtaining a behavioral 
description for the control logic of such pipelines. A simplified 
C++ implementation that produces a VHDL description of the 
control logic is then presented to clarify the algorithm.  
Experimental results that reveal connections between the nature 
of pipeline functions and the complexity of the control logic, 
obtained by utilization of the algorithm, are also presented. 
Consideration of these results can reduce the design space 
exploration of such pipelines to a more practically feasible 
subspace. 

 
I. INTRODUCTION 

 

A pipeline can be visualized as a collection of processing 
segments through which binary information flows. Each 
segment performs partial processing dictated by the way the 
task is partitioned [5]. Each segment consists of an input latch 
followed by a combinational circuit. In linear pipelines the 
output of the combinational circuit in a given segment is 
directly applied to the input latch of another segment. Such 
pipelines need no control logic and all that is needed for the 
pipeline to function is a clock pulse to trigger its latches. In 
non-linear pipelines, on the other hand, the output of the 
combinational circuit in a given segment may need to have a 
datapath to the input latch of a number of different segments 
(bringing about what is known as a fork in the datapath) and 
the input to a segment may need to be selected from a number 
of different possible inputs (bringing about what is known as 
a join). Joins are implemented by switching logic such as 
multiplexers and it is at this point that control logic is needed. 
It is up to the control logic to activate the selection signals of 
the switching logic such that data is guided through the 
segments of the pipeline appropriately.  
When a number of functions with equivalent sections need to 
be implemented within one system, their equivalent sections 
can be shared, resulting in a multifunction pipeline. The 
interconnection between segments of a multifunction pipeline 
also consists of forks and joins. Thus these pipelines also 
need control logic to function properly. 
In what follows preliminary definitions are presented first. 
An abstract model of the control logic is described in section 

three. The algorithmic procedure for obtaining a behavioral 
description of the control logic is presented in sections four 
through six. Based on this algorithm, a demonstrative 
program is presented in section seven that, given the 
reservation table(s) of the function(s), produces a behavioral 
description of the control logic in VHDL language. Finally, 
in chapter eight, connections between the complexity of the 
control logic and the function(s) of the pipeline are outlined.  
 

II. PRELIMINARIES 
 

Reservation tables: The combinational circuits within each 
segment are the fundamental building blocks of the pipeline, 
the definition of which specifies a unique pipeline when the 
pipeline is linear. For the definition of a non-linear pipeline to 
be complete, the order of pipeline segment utilization must 
also be specified. Usually, reservation tables are used to 
specify the successive segments used by a function. The rows 
of the reservation table denote the segments of the pipeline 
and the columns are representative of the latency (clock 
cycles following initial insertion of data) [6].  
 

Design space exploration: High-level synthesis (HLS) is the 
process of translating a behavioral description to a register 
transfer level (RTL) structural description [7, 8, 9]. In such a 
process, the design space can be explored in three 
dimensions, namely area, latency and clock period [10]. 
The larger the design space, the more time consuming it is to 
obtain an optimal implementation of the system. Hence, it is 
justified to be in search of approaches to constrain the design 
space to more practically feasible implementations. 
Guidelines to such constrains, in the design of non-linear 
pipelines, are obtained through experimental results when the 
relationship between the complexity of the control logic and 
the order of segment utilization is studied. 
 

The control logic: It is the responsibility of the control logic 
to activate the selection signals of the switching logic at the 
joins (multiplexers) in such a way that will cause data to pass 
through the segments determined by a specific function. 
The number of data inputs to a join is equal to the number of 
segments that need their output to propagate through the 
combinational logic of the segment following the join, by at 
least one function. The total number of output signals that the 
pipeline control logic must possess is equal to the total of the 
number of selection inputs to all the joins. For the control 
logic to be able to delay insertions to a permissible latency, 
one more output signal may be required as a strobe to 
external logic to signify when data has been accepted by the 
control logic and inserted into the pipeline.   
Input signals to the control logic signify when a request for 
the insertion of data is pending and what function must be 
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applied on that data. Thus, the number of possible input-
signal combinations to the control logic must be considered 
equal to the number of different functions of the pipeline plus 
one, the extra combination signifying when no data is being 
inserted.  For instance the control logic of a non-linear 
pipeline with only one function needs only one input signal to 
notify when data is and is not being inserted. 

 
III. AN ABASTRACT MODEL OF THE CONTROL LOGIC 

 

The control logic can be considered as being a number of 
sequence counters, their output signals combined to form the 
overall output. Each counter, when triggered, produces a 
special sequence that sets the join (multiplexer) selection 
signals to values that will guide data through the segments of 
the pipeline in the order determined by a specific function. 
When data is inserted into the pipeline, one of the counters 
corresponding to the function to be applied on the data must 
be triggered. When the sequence is finished, the counter 
remains inactive until the next appropriate insertion activates 
it again.    
Since data inserted into the pipeline will not need to enter all 
the segments of the pipeline in each clock cycle, the only 
output signals that need to have a specific value during a 
specific clock-cycle are those that correspond to the selection 
signals of the join preceding the segment that data must enter 
during that clock cycle and the other output signals are of no 
consequence. Therefore, combining the output signals of a 
number of such counters with a Boolean Or/And operator 
while setting the inconsequential output signals to Boolean 
Zero/One will produce the necessary control signals capable 
of guiding data through the pipeline in an overlapped manner 
(generation of the counting sequence for a number of 
insertions can concurrently be in progress).   
Such control logic, though easy to design, will not be able to 
detect conflicts (when two instances of a function need to 
allocate a segment at the same time) independently. Our goal 
is to design a single control unit, capable of delaying 
insertions until a permissible latency while consuming the 
minimum logic circuitry.   
 

IV. DESIGNING THE CONTROL LOGIC 
 

It is based upon the abstract model of the control logic that a 
procedure for obtaining a behavioral description for such 
logic can be devised.  
The sequence of output signal combinations that the control 
logic must produce in consecutive cycles, for each of the 
functions to be implemented, are primarily determined. These 
sequences can be referred to as the generator-sequences of 
the functions. Each component of the generator-sequence 
corresponds to a specific latency and consists of a number of 
bits. Each bit corresponding to one of the control logic output 
signals. Some of these bits have determinate values and the 
values of the others are of no consequence to the 
implementation of the function during the corresponding 
latency. 
Construction of the state diagram (as a graphical form of 
description) of the control logic is commenced with a single 
state that has a no-insertion loop on it (no-insertion is 
signified by one of the possible input combinations). All the 
output signals in this state have inconsequential values. When 
the pipeline is in this state and data is inserted to the pipeline 

with a function X specified to be applied on it (signified by 
one of the possible input combinations), the generator-
sequence of function X must be produced at the control 
logic’s output signals during the clock cycles following the 
insertion. Thus, there must be a transition from the initial 
state (for the input combination that signifies function X) to a 
state that has an output value equal to the first component of 
the generator-sequence of function X. That state must have a 
no-insertion transition to another state that has an output 
value equal to the second component of the generator-
sequence of X and so on. The final state, with an output value 
equal to the final component in the generator-sequence of X 
must have a no-insertion transition back to the initial state of 
the state diagram. In this way, the control logic will begin 
producing the necessary output signals to guide data through 
the pipeline segments as specified by a function only if the 
insertion occurs when the control logic is in the initial state.  
In order for the control logic to be able to guide data through 
the pipeline for insertions that occur before the generator-
sequence of a previous insertion has finished, generator-
sequences must be combined. From hear on, the combining 
operator in the abstract model is considered to be the Or 
operator and all inconsequential values are considered as 
being set to Zero. 
The insertion of new data to a pipeline is permissible only 
when the generator-sequence of the function to be applied on 
the data and the remainder of the generator-sequence of a 
function to be applied on previously inserted data do not have 
different definite values for an output signal at the same clock 
cycle. 
Two definitions are made to simplify descriptions. The 
“remaining-sequence” of a state in the state diagram of the 
control logic is defined as the sequence of output 
combinations that is produced with only no-insertion 
transitions, from that state. Two sequences are said to be 
“non-colliding” if none of the same indexed components of 
the two sequences have different determinate values for the 
same bit position. 
For every state in the state diagram, if the remaining-
sequence of that state and the generator-sequence of function 
X are non-colliding sequences, there must be a transition for 
function X from that state to a new state from which no-
insertion transitions will produce the sequence obtained by 
combining the two sequences (such as in the abstract model). 
In this manner the guidance of data through the pipeline, for a 
number of insertions, can be overlapped.  
There remains something missing in the approach explained 
above, not allowing a backtracking algorithm to be devised 
from it. The condition for backtracking is incomplete and 
states are continuously added to the state diagram. What 
hasn’t been considered so far is the equivalence between 
states. 
 

V. STATE MINIMIZATION 
 

From our knowledge of the theory of finite state machines, 
we know that two states are equivalent if their outputs are the 
same and they change to the same or equivalent next states 
for all input combinations [11].  
In the procedure explained above, all transitions for different 
functions (for different input combinations) from a state are 
determined on the basis of that state’s remaining-sequence 
and the generator-sequences of the functions. Thus, two states 
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with the same remaining-sequence will have transitions for 
the same function to states that have the same remaining-
sequence and the same output value. In other words, two 
states with the same remaining-sequence will produce the 
same sequence of output combinations for the same sequence 
of input combinations and this will hold even as the length of 
the input sequences tend towards infinity. Hence, a pragmatic 
conclusion can be made that states with the same remaining-
sequence are equivalent. Consequently, one of the equivalent 
states can be removed and transitions to that state replaced 
with transitions to its equivalent state. This leads to a 
minimum state diagram with a finite set of unique states. 
Consideration of the equivalence between states in the 
process of obtaining the state diagram leads us to a 
backtracking algorithm that produces the minimum state 
diagram.  
 

VI. THE ALGORITHMIC PROCEDURE 
 

To simplify the design procedure, a list containing defined 
states and their corresponding remaining-sequences must be 
maintained during the design process. This list is referred to 
as the created-sequence-list (abbreviated as CSL).  
For any state in the state diagram such as S1, if the 
remaining-sequence of that state and the generator-sequence 
of a function such as X are non-colliding sequences, a 
transition from state S1, for function X, to a state such as S2 
must be added to the state diagram. The output value of S2 
and its remaining-sequence must be equal to the first 
component and the rest of the components of the combination 
of the two sequences, respectively. If no such state can be 
found, it must be defined and added to the CSL. 
For no-insertion transitions to be considered, a function that 
has a remaining-sequence consisting entirely of inconse-
quential components, called a null sequence, must be added 
to the set of pipeline functions. Transitions corresponding to 
this function should be labeled as no-insertion transitions and 
the function will be referred to as the null function. The 
procedure for obtaining the state diagram of the control logic 
is depicted in the flowchart shown in the figure 1.  
Construction of the state diagram of the control logic is 
commenced with a single state that has a null remaining-
sequence, and the CSL is commenced with a single 
component consisting of a null sequence, the starting state of 
which is the only state in the diagram. The combination of the 
remaining-sequence of this state and the generator-sequence 
of the null function is obviously a null sequence. But such a 
sequence already exists in the CSL. As a result, a transition 
from this state to the initial state of the null sequence must be 
added to the state diagram. This leaves us with a single state 
that has a no-insertion loop on it (as explained before). The 
combination of the remaining-sequence of this state and the 
generator-sequence of a function of the pipeline will be equal 
to the generator-sequence of the function. Thus, there will be 
a transition from this state, for each function of the pipeline, 
to states that have output values equal to the first components 
of the generator-sequences of the functions of the pipeline. 
The remaining-sequences of these states are equal to the 
generator-sequence of their corresponding function, with the 
first component removed. Therefore, the no-insertion 
transitions from these states will enter states that have an 
output value equal to the second component of the 
corresponding function and so on. Finally,  the  output  strobe  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is set to one by all transitions except no-insertion transitions 
to signify when data is being accepted by the pipeline.  
 

Example: As a simple example, the design of the control 
logic of a representative non-linear pipeline that utilizes only 
one of its segments more than once is presented. In such a 
case, the only segment in the pipeline that may have input 
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remaining sequence.
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unchecked function of the
current state) non-colliding
sequences?

Add a transition for F from the current
state to a new state that has an output
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the combination sequence.

Change the current state to
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new state as the combination
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Put the current state on the stack
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Figure1) Flowchart of algorithm for producing the description of
                  the control logic of a non-linear pipeline.
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from more than one segment is the reutilized segment. As a 
result, there is only one join in all the datapaths of the 
pipeline and since only two datapaths enter that join, the 
control logic of the pipeline need only have one output signal. 
Consider a pipeline with such a reservation table: 

 
 

 

This pipeline utilizes three different pipeline segments before 
reutilizing the second segment. Thus, the control logic must 
select the data entering the second segment through the join. 
The status of the join is only of importance in the second and 
fourth latencies (when data must past through the second 
segment). Therefore, the generator-sequence of the only 
function of this pipeline can be determined as (x, 0, x, 1), in 
which the leftmost component corresponds to the first latency 
following insertion and x’s correspond to “don’t care” values.  
Figure 2 displays the state diagram of the control logic of this 
pipeline. State-1, the initial state of the state diagram, is a 
state that has a null remaining sequence. Since the remaining 
sequence of this state and the generator sequence of the 
pipeline function are non-colliding sequences, there is a 
transition from this state to state-2, a state whose remaining-
sequence is the generator-sequence with the first component 
removed. The remaining-sequence of state-2 and the 
generator-sequence are also non-colliding sequences. Thus, 
there is a transition from state-2 to state-5, a state whose 
remaining sequence is the combination of the remaining-
sequence of state-2 and the generator-sequence, with the first 
component removed. There is also a no-insertion transition 
from state-2 to state-3, a state whose remaining sequence is 
the remaining sequence of state-2 with the first component 
removed. In the same manner, states-3, 4, 5 and 6 have no-
insertion transitions to states 4, 1, 6 and 4 respectively.  

 
 

VII. IMPLEMENTATION 
 

The first thing that must be determined is which output bits 
are to be connected to which selection bits of which 
multiplexer. This is an arbitrary selection, but must be 
determined before control logic design can begin. The 
generator-sequences of the different functions must then be 
determined. The following code produces the generator-
sequences for a pipeline with n_func functions, a maximum 
function length of max_lngth, n_seg segments and the 
reservation tables stored in res_tbl (segment outputs are, for 
lucidity, considered  to be  connected to multiplexer  inputs  in  

increasing order of their index): 
 

0  Int res_tbl  [n_funcs][n_segs][max_lngth] = { … }; 
1  for (i = 0; i < n_funcs; i++){ 
2   for (k = 0; k < max_lngth; k++){  
3    for (j = 0; j < n_segs; j++) 
4     if (res_tbl[i][j][k] == 1){ 
5     int select=0; 
6     int prev_seg=0; 
7     for (l = 0; l < n_segs; l++) 
8      if (res_tbl[i][l][k-1] == 1) 
9       prev_seg = l;     
10    for (n=0; n < prev_seg ; n++) 
11     if (inputs_from [j][n] == 1) select++; 
12    int index = seg_sbit[j]; 
13    gen_seq [i][k][index +  … ] = select ;  
     } } } } 

 

If function i utilizes segment j of the pipeline at latency k, the 
segment from which data enters segment j at that latency is 
determined in line 7. The selection combination that must be 
applied to the multiplexer of segment j is determined on line 
10 by counting  the  number  of  lower  indexed segments that 
also have an output path to segment j (all segments that have 
an output path to segment j have been marked in a lookup 
table named inputs_from). On line 12, the index of the output 
bit corresponding to the lowest order selection bit of the 
multiplexer of segment j is determined from another lookup-
table named seg_sbit and stored in index. On line 13 the 
binary bits representing select are stored in consecutive 
locations of the generator-sequence (the gen_seq array) that 
correspond to segment j at latency k (at the beginning, 
gen_seq is considered to be filled with Zeros). 
Once complete, the generator-sequences can be used to 
obtain the description of the control logic. This can be 
implemented in C++ [12] by defining a class with a 
constructor such as:  
 

1  node::node(char rem_seq[max_lngth][n_outputs], int node_num) { 
2   for (func_tested =0; func_tested< n_funcs +1; func_tested++) { 
      coliding = 0; 
3    for (colmn_cntr= 0; colmn_cntr < n_outputs; colmn_cntr++) 
4     for (row_cntr = 0; row_cntr < max_lngth -1; row_cntr++) 
5      coliding !=  
          d_bits [row_cntr+1][colmn_cntr] &&   
     func_dtrmint[func_tested][row_cntr][colmn_cntr]; 
6   if (coliding == 0) { 
7    for (colmn_cntr = 0; colmn_cntr < n_outputs; colmn_cntr++) 
         for (row_cntr = 0; row_cntr < max_lngth-1; row_cntr++) 
          local_rem [row_cntr][colmn_cntr]  
              = rem_seq [row_cntr+1][colmn_cntr]   
                       | gen_seq [func_tested][row_cntr][colmn_cntr]; 
8     for (colmn_cntr = 0; colmn_cntr < n_outputs;  colmn_cntr++) 

  local_rem[max_lngth-1][colmn_cntr] 
                       =  rem_seq  [func_tested][max_lngth -1][colmn_cntr]; 
9      if (! crtd_nodes::first->InList(local_rem,next_node )){ 
10      created_nodes::Add2List(local_rem_seq,next_node ); 
11      node* adjecent = new node (local_rem_seq, next_node); 
          delete adjecent;  } 
12     Write2File 
           ("elsif state = %d and insert_sig = %d then state := %d;  
               strobe <= '1'; output <= %d", 
                 node_num, func_tested, next_node,  
                   local_rem_seq[0][...]); 
13       if (func_tested == 0) no_insrtn_next = next_node; } 
      else 
14     Write2File 
           ("elsif state = %d and insert_sig = %d then state := %d;  
               strobe <= '1'; output <= %d", 
                 node_num, func_tested, no_insrtn_next,  
                   rem_seq[1][...]); 
    }  } 
 

And the body of the class can be defined, with an array that 

Data Accepted: 
No-insertion: 

  1 

  2 

  3 

  4 

  5 

  6 

  1 
  2 
  3 
  4 
  5 
  6 

  x, x, x, x 
  0, x, 1, x 
  x, 1, x, x 
  1, x, x, x, 
  0, 1, 1, x 
  1, 1, x, x 

 State No.   Rem. Seq.

Figure 2:  State diagram of sample pipeline
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contains its remaining sequence, such as below: 
 

class node  { 
public: 

node (char rem_seq[max_lngth][n_outputs],  
          int node_num); 

private: 
char InList(int, int, char&); 
void Add2List(int, int, char&); 
int func_tested; 
char local_rem_seq [max_lngth][n_outputs];  }; 

 

The constructor of each node receives a pointer to an array 
that is the remaining-sequence of that node and an integer 
that determines that nodes ID-number. On lines 3 through 5 
the program determines whether or not the current state and 
the generator-sequence of a function are colliding sequences 
(the arrays d_bits and func_dtrmint assert which locations of 
these arrays contain determinate values). If they are not, the 
state diagram must have a transition from the current state to 
another state. The remaining-sequence of that state is 
calculated in lines 6-7 and stored in local_rem. A linked-list 
containing information about previously defined nodes is 
needed at this point. In this implementation a class named 
crtd_nodes has been used to implement the linked-list [13]. 
This class has a public static member function named InList 
that takes a pointer to an array as its first parameter, it 
explicitly returns one when it finds a state with a remaining-
sequence identical to the array passed to it and implicitly 
returns the ID-number of the state it may find, through its 
second operand. On line 8, crtd_nodes is searched for a state 
with a remaining-sequence identical to local_rem. If no such 
state is found, on line 10, a state with local_rem as its 
remaining-sequence is added to crtd_nodes through one of its 
methods named Add2List. This method implicitly returns the 
ID-number of the newly added state through its second 
operand. On line 11, the constructor of the node 
corresponding to the new state begins execution. Then, in line 
12, an ELSIF statement [14], in VHDL language, is written to 
an output file. This statement is part of the behavioral 
description of the control logic and determines the next state 
the control logic must go to and what the output must be 
when in a specific state and a specific function is pending. 
The function indexed zero is considered to be the NULL 
function. When the remaining-sequence of the current state 
and the generator-sequence of a function are colliding 
sequences the insertion must be delayed. This is implemented 
by deactivating the strobe signal. The next state that the 
control logic must go to is the same state that the no-insertion 
transition goes to. It is for this reason that, in line 13, the 
destination state of the no-insertion transition is saved in a 
local variable. Then in line 14, when an insertion must be 
delayed, the next state is obtained from that local variable. 
Now, if an object of type node is defined with an array 
containing the generator-sequences of the different functions 
(the NULL function in index zero of the array) passed to it, a 
series of ELSIF statements will be produced and written to a 
file. These statements provide a complete behavioral 
description for the control logic when appended within a 
VHDL process [14] that is triggered by the rising or falling 
edge of a clock pulse. 
 

VIII. EXPERIMENTAL OBSERVATIONS 
 

Implementation of this procedure reveals connections worthy 
of note between the complexity of the control logic and the 

latency of initial utilization and reutilization of segments by 
pipeline functions. In what follows the number of states of 
the control logic and the ratio of the number of non-colliding 
transitions to the total number of transitions are considered to 
be representative of the complexity and through-put of the 
pipeline, respectively.  
A pipeline that implements a single function that utilizes all 
segments exactly once is a linear pipeline. Thus, a pipeline 
capable of implementing only a single function that utilizes 
only one segment twice in an execution is considered first. 
Table I shows the number of states of the control logic of 
such a pipeline for various values of the initial utilization 
latency (IUL) and latency difference between initial 
utilization and reutilization (LDIR) of the reused segment. 
Note that the figures in this table are independent of the 
number of segments of the pipeline. It is observed that the 
number of states of the control logic of such a pipeline grows 
exponentially with IUL and LDIR. In fact, the control logic 
of such a pipeline with IUL and LDIR equal to one (a 
pipeline that utilizes its first segment twice before utilizing 
other segments) has three different states and this figure 
roughly doubles for each increase in LDIR and is 
approximately multiplied by 1.5 for each increase in IUL. 
However, if the only reused segment of a pipeline is utilized 
more than twice, the latency of utilizations other than initial 
and final utilizations, do not appear to have very much effect 
on the number of states of the control logic. Evidence of this 
fact can be observed in Table II. This table displays the 
number of states of the control logic for various values of 
IUL and LDIR of the second utilization (the LDIR of the last 
utilization being considered fixed). It is observed that for a 
fixed IUL, different values for the LDIR of the second 
utilization do not cause very much change in the number of 
states of the control logic, (except when the LDIR of the 
second utilization is approximately half the LDIR of the final 
utilization of the segment). 
The next type of pipeline considered is a pipeline with a 
single function that performs multiple utilizations of 
segments, in such a way that the IUL of one segment is less 
than the IUL of all other reused segments and the latency of 
final utilization of that segment is greater than all the other 
reused segments, i.e. the initial utilization of the last segment 
that is reutilized by the pipeline function occurs before the 
initial utilization of all other reutilized segments. It is 
observed that the number of states of the control logic of such 
a pipeline is absolutely independent of the IUL of the reused 
segments. In other words, the latency of initial utilization of 
the pipeline segments can be varied without any change in the 
complexity of the control logic. More interesting is the fact 
that the same holds for the through-put of the pipeline in such 
a scenario. Table III displays the complexity of the control 
logic and the through-put of a pipeline that utilizes a segment 
once, then utilizes another segment two times consecutively 
and finally utilizes the first segment again. The row numbers 
correspond to difference between the IUL of the two 
segments and the column numbers correspond to the LDIR of 
the segment that has a greater IUL.  
Bearing in mind that the order of utilization of segments in 
nonlinear pipelines is usually somewhat negotiable, factors 
such as the ones mentioned above are of importance when 
considered in the early stages of designing such systems 
(designing the reservation tables).  For instance it is evident 

90



 

from Table III that, in such a scenario, initial utilization of the 
second segment at an  earlier  latency  after  initial  utilization 
will result in less complex control logic. 
 

IX. CONCLUSIONS 
 

The presented procedure can be implemented in software to 
produce a behavioral description in an HDL. The control 
logic will however insert fetched data into the pipeline at the 
first permissible latency. This latency may not produce the 
minimum average latency (MAL) and extra logic will be 
needed to delay insertions until a latency that will produce the 
MAL. Some experimental results are presented, showing that 
connections do exist between the complexity of the control 
logic and the order of segment utilization and that 
consideration of these connections in the early stages of 
design can result in less complex control logic and a 
reduction in the design space exploration. But further 
experiments need to be conducted in order to find more 
appreciable connections between the definition and the 
complexity and through-put of non-linear and especially 
multi-function pipelines. 
 

 REFERENCES 
 

[1] Peter Grun, Ashok Halambi, Nikil Dutt, Alex Nicolau “An Algorithm for 
Automatic Generation of Reservation Tables from Architectural 
Descriptions”, International Symposium on system synthesis, 1999. 

[2] N. Park and A. C. Parker, "Sehwa: a software package for synthesis of 
pipelines from behavioral specifications," IEEE Trans. on CAD, vol. 7, 
pp. 356--370, March 1988. 

[3] D. A. Lobo, B, M, Pangrle, “Generating pipelined datapaths using 
reduction techniques to shorten critical paths”, Proceedings of the 
conference on European design automation 1992, pp 390 – 395. 

[4] K. N. McNallm A. E. Casavantm, “Automatic operator configuration in 
the synthesis of pipelined architectures, Conference proceedings on 27th 
ACM/IEEE design automation conference, 1991, pp. 174 – 179. 

[5] M. Morris Mano, “Computer system architecture”, Prentice-Hall 
International, 1993, pp. 302. 

[6] E.S.Davidson, “The design and control of pipelined function generators”, 
Proc. 1971 Int. Conf. on Systems, Networks and Computers, Oaxtepec, 
Mexico, pp. 19-21 

[7] R. Camposano, W. Wolf, “High  level synthesis”, Kluwer Academic, 
1991. 

[8] G. De Micheli, “Synthesis of digital circuits”, McGraw-Hill, 1994. 
[9] Youn-Long Lin, “Recent developments in high-level synthesis”, ACM 

Tras. Design Automation of electronic systems, 2(1):2-21, Jan, 1997.  
[10] Stephan A. Blythe and Robert A.Walker. “Towards a practical 

methodology for completely characterizing the optimal design space”, 
Proceeding of the 19th International Symposium on system synthesis, 
pages 8-13, La Jolla, CA, Nov 1996, ACM-IEEE. 

[11] P.Linz, “An Introduction to Formal Languages and Automata”, D.C. 
Heath and company, 1990. 

[12] Nicolai M.Josuttis, “The C++ Standard Library”, Addison-Wesley 
Reading, 1999. 

[13] J. Tremblay, P. G. Sorenson, “An introduction to data structures with 
applications”, McGraw-hill, 1984, pages 254-294 

[14] Z.Navabi, “VHDL, Analysis and modeling of digital systems”, 
McGraw-Hill, Newyork, 1998  

 
TABLE I - The number of states of the control logic of a pipeline with a single function that utilizes only one segment twice. 

The row numbers denote the IUL and the column numbers denote the LDIR of the reused segment. (N.C.: not calculated) 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 
2 5 9 18 36 72 144 288 576 1152 2304 4608 9216 18432 36864 
3 8 15 27 54 108 216 432 864 1728 3456 6912 13824 27648 N.C. 
4 13 25 45 81 162 324 648 1296 2592 5184 10368 20736 N.C. N.C. 
5 21 40 75 135 243 486 972 1944 3888 7776 15552 N.C. N.C. N.C. 
6 34 64 125 225 405 729 1458 2916 5832 11664 N.C. N.C. N.C. N.C. 
7 55 104 200 375 675 1215 2187 4374 8748 N.C. N.C. N.C. N.C. N.C. 
8 89 169 320 625 1125 2025 3645 6561 N.C. N.C. N.C. N.C. N.C. N.C. 
9 144 273 512 1000 1875 3375 6075 10935 N.C. N.C. N.C. N.C. N.C. N.C. 
10 233 441 832 1600 3125 5625 10125 N.C. N.C. N.C. N.C. N.C. N.C. N.C. 
11 377 714 1352 2560 5000 9375 16875 N.C. N.C. N.C. N.C. N.C. N.C. N.C. 
12 610 1156 2197 4096 8000 15625 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. 
13 987 1870 3549 6656 12800 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. 
14 1597 3025 5733 10816 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. 
15 2584 4895 9261 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. 

 
TABLE II - The number of states of the control logic of a pipeline with a single function that utilizes only one segment three times. 

The row numbers denote the IUL and the column numbers denote the LDIR of the second utilization of the reused segment. 
The LDIR of the last utilization is equal to 16. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 2817 2820 2817 3087 2817 2820 2817 8748 2817 2820 2817 3087 2817 2820 
2 3804 3600 3592 3969 3571 3600 3595 11664 3595 3600 3571 3969 3592 3600 
3 5024 4860 4582 5103 4529 4560 4670 15552 4670 4560 4529 5103 4582 4860 
4 6676 6561 6180 6561 5743 5776 6060 20736 6060 5776 5743 6561 6180 6561 
5 8862 8667 8372 8748 7301 7448 7888 N.C. 7888 7448 7301 8748 8372 8667 
6 11763 11449 11341 11664 9783 9604 10192 N.C. 10192 9604 9783 11664 11341 11449 
7 15616 15194 15019 15552 13506 13230 13176 N.C. 13176 13230 13506 15552 15019 15194 

 
TABLE III - The number of states and the through-put of the control logic of a pipeline with a single function that utilizes a segment before and after utilizing 
a second segment twice. The row numbers denote the difference between the IUL of the two segments and the column numbers denote the LDIR of the second 

reutilized segment.  In all cases, the IUL and LDIR of the first segment are 1 and 12, respectively.  
 

 1 2 3 4 5 
1 521~0.182745 609~0.236364 704~0.238095 875~0.230769 945~0.230769 
2 521~0.182745 609~0.236364 704~0.238095 875~0.230769 945~0.230769 
3 521~0.182745 609~0.236364 704~0.238095 875~0.230769 945~0.230769 
4 521~0.182745 609~0.236364 704~0.238095 875~0.230769 945~0.230769 
5 521~0.182745 609~0.236364 704~0.238095 875~0.230769 945~0.230769 
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