
The Importance of Accurate Task Arrival Characterization
in the Design of Processing Cores

 Hashem H. Najaf-abadi Eric Rotenberg
Department of Electrical and Computer Engineering

North Carolina State University
 {hhashem, ericro}@ece.ncsu.edu

Abstract

This paper studies the importance of accounting for a ne-
glected facet of overall workload behavior, the pattern of task
arrival. A stochastic characterization is formulated that de-
fines regularity in the task arrival pattern. This characteriza-
tion is used as the basis for a quantitative evaluation of the
importance of accurately accounting for the task arrival be-
havior in the design of the processing cores of a Chip Multi-
processor (CMP).

The results of this study show that because the methodolo-
gies traditionally used for evaluating overall performance do
not accurately account for task arrival behavior, they can lead
to significantly suboptimal design solutions. For instance, it is
found that, for an unvarying mix of benchmarks, the best dual-
core design for harmonic mean performance can result in up
to 21% suboptimality depending on the task arrival pattern. In
addition, it is shown that when the pattern of task arrival is
prone to change, simply accounting for average task arrival
behavior can result in up to 12% inaccuracy, and suboptimal-
ity in employed design solutions.

A practical conclusion that can be drawn from the results
of this study is that benchmark vendors need to provide not
only a representative mix of instruction level behavior (the
traditional application benchmarks), but also representative
task arrival patterns. In addition, robustness to variation in
the task arrival pattern needs to be accounted for as an over-
all merit in the evaluation of potential design solutions.

1. Introduction

In the design of any processing system, it is the behavior of
the workload to be executed on the system that justifies the
selection of one reasonable design solution over another. The
less that is known about the workload behavior, the more arbi-
trary the playing field will be, and the more suboptimal the
employed design solutions may in practice turn out to be.

The arrival pattern of tasks with different instruction level
behavior is an aspect of overall workload behavior that has not
received the attention it deserves. For instance, tasks may tend
to arrive independently or in bursts, they may arrive at a high
or a low rate, and the rate may be consistent or variable. These
factors can impact the best design solutions to be employed in
the design of a multi-core system – where the availability of
cores can depend on how tasks are assigned to them. Tradi-
tionally, however, only the mix of instruction level behaviors
(represented by the traditional application benchmarks) has
been accurately accounted for in the methodologies used for
evaluating the performance of processing systems.

Execution throughput is often accounted for in the perform-
ance evaluation of the communication resources of parallel
systems [1]. However, the focus of this study is on the effect of
the task arrival pattern on the best design for the processing
cores themselves. Although germane to the design of any
processing system, the results of this study are more prevalent
to Chip Multiprocessor (CMP) design, where the selection
of the core configurations is ingrained in the design of the sys-
tem.

In general, the turnaround time of a task executed on a given
system is determined by not only how fast the system can exe-
cute the task, but also how long it will take for resources to
become free for the execution of the task in the first place. A
system in which design choices have been made based on only
the execution time of tasks in isolation, may provide high per-
formance to certain workloads at the cost of lower perform-
ance to others. In a real-world setting, the less suitable
workloads will occupy system resources and stall the execu-
tion of the more suitable workloads. This can result in lower
overall performance than an alternative design may have pro-
vided. Therefore, accounting for the full effect of workload
behavior requires an accurate understanding of how tasks tend
to arrive at the system relative to each other.

Note that any approach to measuring overall performance
can be viewed as being representative of some form of task
arrival behavior. However, the objective of this study is to
determine whether such task arrival patterns provide a good
enough approximation, or whether it is important to accurately
account for more representative task arrival behavior. It is with
this goal in sight that we formulate different task arrival char-
acteristics and empirically evaluate their effect on overall per-
formance.

We believe that this study presents a number of valuable
contributions. Among them:
• A stochastic characterization of task arrival behavior is for-

mulated, based on which regularity is defined. This lays the
groundwork for coherent evaluation of the effect of task ar-
rival behavior on overall performance.

• It is empirically shown that, under typical technology char-
acteristics, accounting for the task arrival behavior is crucial
to accurate and insightful performance evaluation of differ-
ent design solutions for the processing cores in multi-core
systems.

• It is shown that when the task arrival behavior varies over
time, averaging out the task arrival characteristics can result
in notable inaccuracy and incorrect conclusions regarding
the best design solutions. This means that the pattern of
variation of the task arrival behavior over time also needs to
be accounted for, not only an aggregation of characteristics.

• Based on the observed results, two recommendations are
made for attaining better accuracy in performance evalua-
tion. One is that benchmark vendors, in addition to provid-
ing a representative mix of workload behavior (in the form
of a set of application benchmarks), also need to provide
representative task arrival patterns. The other is that robust-
ness to variation in the task arrival pattern needs to be ac-
counted for in the overall merit of any design solution.
The next section describes the overall methodology used for

empirical evaluation throughout this study. Subsection 2.1
introduces the set of core designs used in the evaluation. Sub-
section 2.2 describes how task arrival is simulated and per-
formance is measured. In subsection 2.3, a model of task arri-
val behavior and the notion of regularity in task arrival are
formulated. Section 3 explores the interaction between task
arrival characteristics and the choice of core designs in dual-
core systems. Section 4 studies the effect of averaging out the
different task arrival characteristics when they are not constant
(resulting in irregularity). Section 5 explores the interaction
between task arrival characteristics and two other design as-
pects of multi-core systems: scheduling and the number of
cores. Section 6 discusses recommendations that stem from
results of this study. Section 7 presents an overview of related
work. Section 8 discusses further issues regarding the effect of
task arrival behavior on overall performance, and Section 9
concludes this study.

2. Experimental Methodology

2.1. The Palette of Core Designs

To evaluate the interaction between the core designs em-
ployed in a multi-core system and task traffic characteristics,
we use a predefined palette of core designs. This is a matter of
convenience: our goal is not to prescribe designs, as in other
work [3], but rather to understand the suboptimality caused by
composing systems with specific traffic characteristics in mind
and then applying alternate traffic characteristics. The palette
is comprised of core designs that have each been customized
(i.e., tailored for optimum performance) for an individual
SPEC2000 integer benchmark in 45nm technology. Customiz-
ing cores to benchmarks is a convenient and systematic way of
deriving differentiated cores that cover the space of instruction
level behavior.

The customized cores were attained through a simulated an-
nealing exploration process. More precisely, the different de-
sign parameters were randomly varied, and for each variation
the effect on performance was measured through cycle-
accurate simulation. If the new configuration performed better
than the best configuration observed until then, that configura-
tion was recorded as the best. If it displayed less than half the
performance of the best configuration, the exploration would
rollback. Otherwise, another design parameter was randomly
varied, and the exploration process was continued.

The superscalar width, register-file/ROB size, issue-queue
size, L1 and L2 cache configurations, and clock frequency are
among the design parameters varied. The performance of each
of the intermediate configurations was measured through cy-
cle-accurate simulation of the execution of the benchmark on
the sim-mase simulator [16] of the Simplescalar V4.0 toolset
configured correspondingly. The pipeline depth of each mi-
croarchitectural unit was extracted from the propagation delay
of the unit, the clock frequency of the system, and the latch
delay. The CACTI V5.3 modeling tool [15, 17] was employed
to estimate the propagation delay of the different design units.

The load-store queue was modeled as a fully-associative
structure with two read and two write ports, with each entry
consisting of 8 bytes. The wakeup logic was modeled as a
fully-associative structure with as many read and write ports as
the issue-width of the design. The register file was modeled as
a direct-indexed structure with as many write ports as the is-
sue-width, and two times as many read ports. A number of
design parameters were set constant throughout the design
space and across all design solutions. Specifically, a fixed de-
lay of 0.3ns was employed for all pipeline latches, a fixed de-
lay of 50ns for memory access, and a fixed delay of 2ns for the
frontend of all designs.

The customized cores are documented in Table 1. The per-
formance of each benchmark on every core design is shown in
Table 2. In both tables, a column corresponds to the custom-
ized core of a benchmark. In Table 2, rows correspond to
benchmarks and columns correspond to core designs. Each
entry shows the performance of the corresponding benchmark
on the corresponding core design. Notice that the performance
of a benchmark is highest when executed on its own custom-
ized core design, as is shown in boldface. The evaluations pre-
sented in following sections have been repeated with the cus-
tomized cores for 70nm technology, and similar overall con-
clusions were observed.

Table 1: Microarchitectural configurations customized to individual SPEC2000 integer benchmarks (in 45nm technology).

 customized cores
 bzip gap gcc gzip mcf parser perl twolf vortex vpr crafty

No. of cycles for memory access 196 299 298 174 124 298 342 199 224 198 213
No. of pipeline stage of the front-end 7 11 11 6 4 11 13 7 8 7 8
Dispatch, issue, and commit width 4 6 5 6 6 6 4 4 6 6 4
ROB size 512 256 64 256 128 256 256 512 512 256 256
Issue queue size 32 32 32 8 64 32 32 32 128 32 8
Min. lat. for awakening of dep. Instr. 0 1 1 0 0 1 2 0 2 0 0
Pipeline depth of Scheduler/Reg-file 1 2 1 1 0 2 2 1 2 1 1
Clock period 0.2889 0.2004 0.2009 0.3218 0.4393 0.2008 0.1787 0.2851 0.2576 0.2871 0.2688
L1D associativity 2 2 5 1 1 5 3 2 4 2 2
L1D block-size 1024 128 1024 128 32 1024 64 256 128 1024 128
L1D no. of sets 64 8 256 32 64 256 16 256 128 64 8
L1D access latency 1 2 1 1 4 1 8 1 8 1 8
L2D associativity 26 5 7 4 27 7 6 14 4 14 5
L2D block-size 1024 64 16 32 4096 16 128 8192 16 32768 128
L2D no. of sets 512 256 1024 512 256 1024 64 256 512 64 128
L2D access latency 4 8 16 16 4 16 16 1 16 1 16
Load-store queue size 40 56 40 48 64 32 48 40 104 40 32

Table 2: Performance (in billions of instructions per second) for each benchmark executed on each core type
(each column represents the customized core of a benchmark, and each row represents a benchmark).

 customized cores
 bzip gap gcc gzip mcf parser perl twolf vortex vpr crafty

bzip 4.1734 2.1885 2.607 2.4051 3.361 2.867 2.4757 4.0105 2.3943 4.0515 2.8292

gap 1.4951 3.7109 3.2739 3.3555 1.0336 3.2634 3.4548 2.2491 3.064 2.2327 3.3595
gcc 1.2521 1.7774 2.922 2.8324 0.8463 2.9124 1.8726 1.9414 2.5624 1.9202 2.6123
gzip 2.0661 2.71 3.669 3.8266 1.4165 3.6124 2.568 2.8644 2.8268 2.8319 3.7713
mcf 0.7012 0.3558 0.3026 0.2906 1.1099 0.3197 0.4498 0.8665 0.347 1.0361 0.4461

parser 2.1554 2.8362 3.129 3.0089 1.4966 3.1753 2.2698 2.8763 2.6505 2.8166 2.8955
perl 0.9033 1.4391 2.2446 2.2668 0.5777 2.2576 2.5087 1.4271 2.2317 1.4196 2.3861
twolf 1.9976 1.2075 1.1751 1.2301 1.4213 1.3847 1.1861 2.6381 1.2554 2.5647 1.4537

vortex 1.7695 3.6411 3.4799 3.4652 1.2109 3.6811 3.0811 2.5995 3.9079 2.5811 3.5429
vpr 1.7249 1.6072 1.3358 1.2136 1.2091 1.5366 1.6102 2.3473 1.6937 2.3849 1.6204

benchmarks

crafty 0.8005 1.4256 2.4766 2.338 0.5165 2.5255 2.3666 1.3342 2.4809 1.3402 2.6707

2.2. Simulation of Task Arrival Behavior

For the purpose of this study, we consider the inverse of the
average turnaround time of tasks to represent overall perform-
ance. Unlike other metrics, this metric is not based on any
assumption about the task arrival pattern. Thus, it can serve in
evaluating the effect of different task traffic behavior on per-
formance. However, in order to measure this figure of merit
there needs to be a system in which the task arrival behavior is
actually modeled.

For the evaluation of task traffic behavior in this study, a
simulator has been developed that emulates the queuing and
occupation of different processing cores for the different con-
sidered workload types. Tasks are generated according to a
random process, according to the stochastic parameterization
outlined in the next subsection. Tasks are primarily placed in
the dedicated task-queue of the core with the most suitable
design for the workload type of the task. If the most suitable
core is occupied, the task is directed to the next suitable core.
If all cores are occupied, the task waits for the most suitable
core to become available. When there are cores with the same
microarchitectural configuration in the system (e.g., a homo-
geneous design), tasks are randomly assigned to them based on
availability. Once the execution of a task is complete and the
core is free, the next task at the head of the task queue employs
the core for execution.

Tasks occupy cores for an amount of time proportional to
the performance of the workload type of the task on that core
type. Specifically, all tasks are considered to consist of 3.2
billion instructions. The amount of time a core is occupied by
a task is determined by the rate with which the task’s workload
type is executed on the microarchitectural configuration of that
core (Table 2). As an example, a task of the bzip workload
type will be executed on its own customized core in
(3.2×109)÷4.17 nanoseconds (or 0.77 seconds), and will be
executed on the customized core of gap in (3.2×109)÷2.18
nanoseconds (or 1.47 seconds).

2.3. The Facets of Task of Arrival Behavior

In general, task arrival behavior can be characterized in nu-
merous different ways. What is important for the purpose of
this study is that the characterization be reproducible with
simple stochastic parameters. Moreover, it is necessary that it
provide a breakdown of the different factors that affect task
arrival behavior in real world environments. It is with this ob-
jective that we define the notion of regularity in the task arri-
val pattern.

We consider the task arrival pattern to be regular when the
following task arrival characteristics remain invariable
throughout the time interval of concern:
• Workload mix (the relative frequency of the arrival of tasks

of different workload types): Throughout this study, unless
specified otherwise, the workload mix is considered to be
even across all benchmarks. An uneven workload mix (tasks
of different workload types not having an equal arrival rate)
can be parameterized by the percentage of overall load be-
longing to each benchmark.

• Task arrival load (the rate and distribution with which tasks
are submitted to the system): This characteristic can be pa-
rameterized by the average latency between tasks arriving at
the system, and its distribution. Throughout this study, we
consider the latency between task arrivals to primarily have
a normal distribution.

• Burstyness (multiple tasks of the same workload type arriv-
ing together): This characteristic can be parameterized with
three factors: 1) the percentage of tasks that arrive in bursts,
2) the number of tasks that arrive together, and 3) the set of
workload types that produce tasks in bursts. Burstyness
causes the distribution of the latency between task arrivals to
deviate from a normal distribution. Throughout this study,
the latency between bursts is considered to have a normal
distribution.

• Workload correlation (the arrival of tasks of different work-
load types influencing each other): This characteristic can be
represented by 1) the workload types that are correlated, 2)
the strength of the correlation, i.e., the percentage of tasks
that abide by the correlation, and 3) how the arrival of tasks
of a certain workload type are influenced by or influence the
arrival of tasks of the other workload types. In this study, we
focus on workload correlation in which tasks of correlated
workload types arrive together. Other forms of correlation
are also conceivable. Note that workload correlation does
not necessarily cause the task arrival of any individual
benchmark type to deviate from a normal distribution, or the
workload mix to become uneven.

Note that these different characteristics are not totally inde-
pendent of each other. For instance, non-bursty uncorrelated
task arrival behavior is more representative of server environ-
ments, where users tend to issue single-threaded jobs to the
system independently of each other. Thus, the workload mix
that is more typical of a server environment may be more fit-
ting for such task arrival patterns. The more multi-threaded the
jobs are, the more correlated and bursty the task traffic behav-
ior will be. If the thread-level parallelism is extracted from

loops, there will be burstyness. If it is extracted from different
code regions, there will be correlation between the workload
types of the different code regions.

3. Interaction between Choice of Core Designs
and Task Arrival Characteristics

This section focuses on the choice of core designs of dual-
core systems. Note that with a larger number of cores the over-
all turnaround time and execution throughput of the system
may change. However, the overall conclusions of this study
regarding the importance of the task arrival pattern will not.

Our approach is to compose various dual-core system de-
signs (from the palette of core designs, documented in Subsec-
tion 2.1) that achieve the highest possible performance under
specific design-time assumptions about the task arrival load,
burstyness, and correlation. Subsequently, the suboptimality of
such design solutions is evaluated under alternative task arrival
behavior. In this manner the importance of accurate characteri-
zation of the task arrival pattern is exemplified.

3.1. Non-Bursty, Uncorrelated Traffic

Figure 1 shows the average turnaround time of tasks submit-
ted to three differently designed dual-core systems. One is the
best homogeneous design, employing two copies of the cus-
tomized core design of vpr. The other is the best heterogene-
ous design for light traffic loads (under an average arrival rate
of 0.0055 tasks per second), consisting of the customized core
designs of parser and vpr. The third is the best heterogeneous
design for heavy traffic loads (an average task arrival rate of
0.88 tasks per second), consisting of the customized cores of
crafty and vpr. The best homogeneous design is not influenced
by the traffic load. The results are for non-bursty, uncorrelated
traffic.

Note that in all following figures that contain two graphs,
unless indicated otherwise, the graph on the right provides a
close-up view of light to medium task arrival rates. The graph
on the left shows the turnaround time for the full spectrum of
task arrival rates, from no contention to saturation.

1

3

5

7

9

0.005
5

0.170
5

0.335
5

0.500
5

0.665
5

0.830
5

0.995
5

1.160
5

1.325
5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Best dual-core for light arrival (vpr-parser)
Best dual-core for heavy arrival (vpr-crafty)
Best homogeneous dual-core (vpr)

1

1.5

2

2.5

0.005
5

0.115
5

0.225
5

0.335
5

0.445
5

0.555
5

0.665
5

0.775
5

0.885
5

0.995
5

Average task arrival rate (Hz)
Figure 1: Avg. turnaround time with non-bursty traffic.

These results show that heterogeneity can result in 21% less
average turnaround time in light traffic loads and provide 19%
greater bandwidth (the maximum task arrival rate that the sys-
tem can sustain). At the point where the system reaches satura-
tion (the point at which average turnaround time increases un-
boundedly) the average turnaround time is around 4 times that
under a light traffic load. In light traffic loads, the best design
for light traffic loads displays only slightly better performance
than the best design for heavy traffic loads. However, in heav-
ier traffic loads (0.88Hz), the best design for light traffic loads
performs close to 10% poorer than the best design for heavy
traffic loads.

3.2. Bursty, Uncorrelated Traffic

The results of Figure 2 show the average task turnaround
time with half-frequency double-task burstyness, i.e., half of
all tasks arrive at the systems in bursts of two tasks. No benefit
remains for heterogeneity in light traffic loads. In fact, the best
dual-core design for light traffic loads is homogeneous, con-
sisting of two copies of the customized core of twolf. The cus-
tomized cores of gcc and vpr comprise the best dual-core de-
sign for heavy traffic loads.

Burstyness causes the average turnaround time to increase
across all arrival rates. For instance, the average turnaround
time of the best heterogeneous design for light traffic loads
increases 23%, from 1.34 seconds (for non-bursty) to 1.65
seconds (for bursty). The increase is less for the homogeneous
design. However, burstyness does not majorly affect the
bandwidth of the system (compare with Figure 1). Thus, in
heavy traffic loads, heterogeneity remains of noticeable bene-
fit, still providing 19% greater bandwidth.

0

2

4

6

8

10

12

0.005
5

0.170
5

0.335
5

0.500
5

0 .665
5

0.830
5

0.995
5

1.160
5

1.325
5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Best dual-core for light arrival (twolf)
Best dual-core for heavy arrival (gcc, vpr)

1.5

2.5

3.5

4.5

0.005
5

0.115
5

0.225
5

0 .335
5

0.445
5

0.555
5

0 .665
5

0.775
5

0.885
5

0.995
5

Average task arrival rate (Hz)
Figure 2: Average turnaround time with half-frequency
double-task bursty traffic.

Figure 3 shows the average task turnaround time with full-
frequency double-task burstyness, i.e., all tasks arrive at the
systems in bursts of two tasks of the same workload type. The
best dual-core design for heavy traffic loads is heterogeneous
and consists of the customized cores of parser and vpr. The
best dual-core design for light traffic loads is once again ho-
mogeneous, consisting of two copies of the customized core of
vpr.

0

2

4

6

8

10

12

0.005
5
0.115

5
0.225

5
0.335

5
0.445

5
0.555

5
0.665

5
0.775

5
0.885

5
0.995

5
1.105

5
1.215

5
1.325

5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Best dual-core for light arrival (vpr)
Best dual-core for heavy arrival (vpr-parser)

1.5

2.5

3.5

4.5

0.005
5

0 .115
5

0 .225
5

0.3 35
5

0.445
5

0.555
5

0 .665
5

0 .775
5

0.8 85
5

0.995
5

Average task arrival rate (Hz)
Figure 3: Average turnaround time with full-frequency
double-task bursty traffic.

The heterogeneous design is outperformed by the homoge-
neous design in light traffic loads by more than 17%. Com-
pared to half-frequency burstyness, the heterogeneous design
observes a 14% increase in average turnaround time in light
traffic loads, while that of the homogeneous design barely
changes. However, the heterogeneous design does still provide
a bandwidth improvement consistent with non-bursty traffic.

In a heterogeneous design, when tasks of the same workload
type arrive in bursts, some tasks may be forced to be executed
on unsuitable cores. It is for this reason that heterogeneity re-
sults in lower overall performance in the presence of
burstyness (assuming light traffic loads). The different core

designs individually achieve better performance under certain
workload types by sacrificing performance under others.

3.3. Homogeneity and Task Correlation

In the results presented so far, we see that the task arrival
pattern can affect whether homogeneity or heterogeneity is the
best design choice, and the best choice of core designs (from
our palette) to employ when heterogeneous. But, if the design
of the system were to be limited to homogeneity, neither the
load nor burstyness of task arrival will majorly affect the best
choice of core design (assuming the workload mix is evenly
distributed and remains unchanging).

For instance, Figure 4.a shows the average task turnaround
time in a homogeneous system employing the customized core
design of vpr, and that of a homogeneous system employing
the customized core design of crafty. The vpr-based design
yields lower turnaround time across the entire arrival rate spec-
trum and higher execution throughput under heavy loading. In
other words, the best homogeneous dual-core system is not
sensitive to arrival rate.

What does affect the best core design to employ in a homo-
geneous system is correlation between the tasks of different
workload types. Simply as an example, consider a non-bursty
task arrival pattern in which all tasks are preceded by a 1/10th
task of the gzip workload type (consisting of 0.32 billion in-
structions). Note that the workload mix remains unchanged,
only the pattern of task arrival differs.

The results of Figure 4.b show the average task turnaround
time for this form of correlated task arrival. Both systems ob-
serve ~10% increase in average task turnaround time in light
arrival loads. The reason for this is that the short gzip tasks
stall the execution of their correlated tasks. This adds up to a
considerable drop in the execution throughput.

More importantly, the gzip benchmark performs considera-
bly poorer on the best core design for uncorrelated task arrival
(the customized core of vpr). This translates into slightly lower
overall performance than the customized core of crafty in me-
dium task loads.

Such correlations can accumulate and create larger differ-
ences in performance. All in all, these results show that the
pattern of task arrival, even with a fixed workload mix, can
influence the best homogeneous design.

1

3

5

7

0.005
5
0.115

5
0.225

5
0.335

5
0.445

5
0.555

5
0.665

5
0.775

5
0.885

5
0.995

5
1.105

5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Homogeneous dual-core (vpr)
Homogeneous dual-core (crafty)

1

3

5

7

0 .005
5

0.060
5

0.115
5

0.170
5

0.225
5

0.280
5

0.335
5

0 .390
5

0.445
5

0.500
5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Figure 4: Avg. turnaround time for two dual-core homoge-
neous designs under (a) uncorrelated, and (b) correlated
task arrival (see text for description).

3.4. Section Summary

All in all, the results in this section show that notable subop-
timality can result from disparity between the task arrival be-
havior accounted for in the design of a system and that which
is observed at run-time. For instance, designing a dual-core

system for high performance in lightly-loaded full-bursty arri-
val will lead to a homogeneous design solution that displays
21% suboptimal performance in non-bursty arrival. On the
other hand, designing a dual-core system for high performance
in lightly-loaded non-bursty arrival will lead to a heterogene-
ous design solution that displays 17% suboptimal performance
in full-bursty arrival.

4. Irregular Task Arrival

When any of the factors outlined in Section 2.3 are not con-
stant, the task arrival behavior is irregular. An issue of interest
is whether a regular task arrival pattern can be used to model
an irregular pattern. Also, the potential for change in the task
arrival behavior raises the issue of design robustness: the ca-
pacity to perform acceptably well under different task arrival
characteristics. The following section addresses these issues.

4.1. Irregularity in the Workload Mix

An assumption made throughout the prior section is that the
task traffic is distributed evenly across the different bench-
marks. Under this assumption, however, the high performance
of the best multi-core design may be mostly due to one of the
cores in the system providing extremely high performance for
a certain workload type. Thus, in environments where the
workload type happens to appear infrequently, the multi-core
design may be extremely suboptimal in the overall perform-
ance it provides.

For instance, among the SPEC2000 integer benchmarks,
mcf is the most different. Its customized core provides ex-
tremely suboptimal performance for all the other benchmarks
and the customized cores of the other benchmarks provide
suboptimal performance to mcf. Although the customized core
design of mcf is not among the best cores to employ in any
dual-core design, the presence of the benchmark mcf in the
workload mix heavily influences the best combinations of
cores. For instance, when mcf is excluded from the workload
mix, the best core design to employ in a homogeneous dual-
core system for non-bursty task arrival is the customized core
of crafty. With mcf present in the workload mix, the best core
design is the customized core of vpr.

Figure 5.a compares the average task turnaround time in a
homogeneous dual-core system employing the customized core
of vpr, to one employing the customized core of crafty, when
the benchmark mcf is present in the workload mix. These re-
sults show that employing the customized core of crafty rather
than that of vpr increases the average turnaround time by 14%
in the lowest traffic loads and decreases the peak bandwidth of
the system by 30%.

1

2

3

4

5

0.005
5

0.115
5

0.225
5

0.335
5

0.445
5

0.555
5

0.665
5

0.775
5

0.885
5

0.995
5

1.105
5

1.215
5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Best dual-core design w ith mcf in workload mix (v pr)
Best dual-core design w ithout mcf in workload mix (crafty)

1

2

3

4

5

0 .005
5

0.170
5

0.335
5

0.500
5

0 .665
5

0.830
5

0.995
5

1 .160
5

1.325
5

Average task arrival rate (Hz)
 (a) (b)
Figure 5: Average task turnaround time when (a) mcf is,
and (b) mcf is not, in the workload mix of the actual task
arrival pattern applied to the system.

Figure 5.b, on the other hand, shows the average task turn-
around time with the same dual-core systems when the bench-
mark mcf is not present in the workload mix. These results
show that employing the customized core of vpr rather than
that of crafty increases the average turnaround time by 14% in
the lowest traffic loads and decreases the peak bandwidth of
the system by 17%.

The results of Figure 5 confirm the well-known fact that it is
important to select a representative workload mix in perform-
ance evaluation, and that accounting for different workload
mixes is essential to finding a design solution that is robust. In
this simple example, employing the customized core of vpr is
the more robust solution as it outperforms crafty when mcf is
in the workload mix, and displays comparably less suboptimal-
ity when mcf is not.

Less established is the fact that any accounting for irregular-
ity in the workload mix of the task arrival pattern is essential to
the accuracy of performance evaluation. Averaging out the
presence of different workload types in the workload mix can
lead to misleading conclusions. For instance, consider a task
arrival pattern in which half of the time (assuming phase-based
variation) the benchmark mcf is present in the workload mix,
and is absent in the other half.

The accurate way to measure the overall performance is to
determine the average task turnaround times with mcf both
present and absent in the workload mix, and then take the av-
erage of these turnaround times. One may assume it legitimate
to take a shortcut and model a task arrival pattern in which mcf
has half the arrival rate of the other benchmarks. However, the
half-presence of a workload type can have a very different
effect on performance than it being fully present half of the
time and absent the next half.

Experimental results show that the best core design to em-
ploy in a homogeneous dual-core system for non-bursty traffic
in which mcf has half the arrival rate of the other benchmarks
is the customized core of twolf. However, the customized core
of vpr is the best core design to employ for traffic in which mcf
is in the workload mix half of the time and absent the other
half.

Figure 6 compares the average turnaround time of these two
dual-core homogeneous systems, under traffic in which mcf
tasks are in the workload mix only half of the time. These re-
sults show that averaging out the workload mix results in the
adoption of a design that is 12% suboptimal in the execution
throughput it can provide.

0

1

2

3

4

5

0.00
55

0.1
15

5

0.22
55

0.3
35

5

0.44
55

0.5
55

5

0.66
55

0.77
55

0.8
85

5

0.99
55

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Homogeneous dual-core with customized core of twolf
Homogeneous dual-core with customized core of vpr

Figure 6: Irregular task arrival with mcf in the workload
mix only half of the time.

4.2. Irregularity in the Traffic Load

The results of Section 3 show that the traffic load can alter
the best cores to employ in a multi-core system. Thus, irregu-
larity in the traffic load also needs to be accurately accounted

for. Averaging out different task arrival rates can lead to mis-
leading conclusions.

Consider a task arrival pattern in which tasks arrive at a high
rate half of the time and arrive at a low rate in the other half.
An accurate way to measure the overall performance is to de-
termine the performance under both heavy and light traffic
loads, and then take the average. One may assume it legitimate
to take a shortcut and model a task arrival pattern in which the
arrival rate is the arithmetic mean of that of the two traffic
loads. However, medium-loaded traffic can have a very differ-
ent effect on performance than it being lightly-loaded half of
the time and heavily-loaded the other half.

For instance, experimental results show that the best combi-
nation of core designs to employ in a dual-core system, for
full-bursty traffic that has an average task arrival rate of 0.88
tasks-per-second half of the time and an average task arrival
rate of 0.0055 tasks-per-second in the other half, consists of
the customized cores of crafty and vpr. However, the best
dual-core design, for full-bursty traffic with an average task
arrival rate of 0.44 (or the approximate average of 0.88 and
0.0055) tasks-per-second, is a homogeneous design employing
the customized core of vpr.

Figure 7 compares the average turnaround time of these two
dual-core systems under full-bursty traffic. The coarse dashed
line highlights the average task turnaround time on the homo-
geneous system, and the fine dashed line highlights that of the
heterogeneous system. The center of each arrowhead line
marks the average turnaround time with an arrival pattern that
is lightly-loaded half the time and heavily-loaded in the other
half.

1.5
2

2.5
3

3.5
4

4.5
5

0.0
05

5

0.1
15

5

0.2
25

5

0.3
35

5

0.4
45

5

0.5
55

5

0.6
65

5

0.7
75

5

0.8
85

5

0.9
95

5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Custom core of vpr
Custom cores of crafty and vpr

w ith half-heav y , half-light arriv al
w ith half-heav y , half-light arriv al

Figure 7: Average turnaround time with full-frequency
double-task bursty traffic.

With an irregular arrival rate of 0.88 tasks-per-second half of
the time and 0.0055 tasks-per-second the other half, the dual-
core system with the customized cores of crafty and vpr attains
an average task turnaround time of 2.79 seconds. On the other
hand, the dual-core system with the customized core of vpr
attains an average task turnaround time of 3.33 seconds. These
results show that averaging out the task arrival rate can result
in the adoption of a design solution that is 19% suboptimal in
average turnaround time.

4.3. Irregular Burstyness

The results of Section 3 show that the burstyness of the task
arrival pattern can alter the best cores to employ in a multi-
core system. Averaging out different degrees of burstyness can
potentially lead to misleading conclusions.

For instance, consider a task arrival pattern in which the traf-
fic is non-bursty half of the time and full-bursty the other half.
An accurate way to measure the overall performance is to de-
termine the performance under both non-bursty and full-bursty
traffic, and then take the average. One may assume it legiti-

mate to take a shortcut and model a task arrival pattern with
half-frequency burstyness. However, half-frequency burstyness
may have a very different effect on performance than being
non-bursty half of the time and full-bursty the other half.

Experimental results show that the best combination of core
designs to employ in a dual-core system for lightly-loaded
traffic that is full-bursty half of the time and non-bursty the
other half consists of the customized cores of vpr and crafty.
However, the best dual-core design for lightly-loaded half-
frequency bursty traffic is a homogeneous design consisting of
the customized core of twolf (as in the results of Figure 2).
Figure 8 compares the average turnaround time of these two
dual-core systems under traffic that is non-bursty half of the
time and then full-bursty the next half. These results show that
averaging out the burstyness can lead to the adoption of a de-
sign that is over 10% suboptimal in the average task turn-
around time it provides.

1.5

2

2.5

3

0.005
5

0.115
5

0.225
5

0.335
5

0.445
5

0.555
5

0.665
5

0.775
5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Customized core of twolf
Customized cores of crafty and vpr

Figure 8: Irregular task arrival with full-bursty traffic half of
the time and non-bursty traffic the other half.

5. Other Design Considerations

Sections 3 and 4 focused on the choice of core designs of
dual-core systems. This section explores other aspects of the
design of a multi-core system that interact with task arrival
behavior, namely, the scheduling policy and number of cores.
For both design aspects, the degree of heterogeneity is a
prominent consideration.

5.1. Scheduling

The way in which tasks are scheduled and queued in a multi-
core system can also impact how task arrival behavior affects
overall performance. This is an issue of most importance in
heterogeneous designs when the task traffic is bursty. The
main concern in scheduling is whether tasks should be directed
to only the core with the most suitable design or to the most
suitable core available. These two approaches are illustrated in
Figure 9.

Figure 9: Two different approaches to task scheduling.

Depending on how well the tasks suitable for core A are
executed on core B, it may or may not be beneficial to wait

until core A is free. The approach taken regarding this issue
can influence the best combination of core designs to employ
in the system. In results presented thus far, the scheduling
mechanism used was to direct tasks to the most suitable core
available.

In Figure 10, the average task turnaround times for these
two task scheduling approaches are compared under full-
frequency double-task bursty traffic. Figure 10.a shows results
for a dual-core design with the customized cores of vpr and
twolf. These are the best two cores to employ in a dual-core
system in order to maximize the arithmetic mean of perform-
ance in light and heavy arrival rates. We refer to this form of
heterogeneity as mild heterogeneity, as the cores are not heav-
ily biased towards disjoint subsets of the workload space.
These results show that directing the tasks to only the most
suitable core results in a 50% increase in the average task
turnaround time in light traffic loads.

Figure 10.b shows results for the best combination of cores
for heavily-loaded task arrival, namely, the customized cores
of parser and vpr. These cores are heavily biased towards dis-
joint subsets of the workload space. We refer to this form of
heterogeneity as strong heterogeneity. The results show only a
small increase in the average task turnaround time when tasks
are directed to only the most suitable core.

With mild heterogeneity, tasks are executed fast enough on
the unsuitable cores that stalling them to be executed on only
the most suitable cores is detrimental to performance. This,
however, is not the case with strong heterogeneity, as tasks
that are directed to unsuitable cores tie up the resources with
inefficient work. Allowing tasks to migrate from core to core
in mid-execution does not change this outcome.

0
1
2
3
4
5
6
7

0.005
5

0.115
5

0.225
5

0.335
5

0.445
5

0.555
5

0.665
5

0.775
5

0.885
5

0.995
5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Tasks directed to most suitable core available
Tasks directed to only most suitable core

0
1
2
3
4
5
6
7

0.005
5
0.115

5
0.225

5
0 .335

5
0.445

5
0.555

5
0.665

5
0.775

5
0.885

5
0.995

5
1.105

5
1 .215

5

Average task arrival rate (Hz)
(a) (b)

Figure 10: Average turnaround time in a dual-core with
(a) mild heterogeneity, and (b) strong heterogeneity.

What can be concluded from these results is that, although
mild heterogeneity may provide a good tradeoff between per-
formance in light and heavy traffic loads, it is more sensitive to
the task scheduling mechanism than strong heterogeneity.

5.2. The Number of Cores

Major factors that limit the number of cores employed in a
system include die area and design complexity. More cores
can provide greater overall execution throughput. Being able
to sustain a high throughput is desirable as long as it does not
come at excessive cost. However, in order to be able to make
an accurate assessment of the performance-cost tradeoff, there
is need for accurate measurement of performance. It is for this
reason that the task arrival behavior can also influence the best
number of cores to employ in a system.

Figure 11 compares how average turnaround time varies
with traffic load in heterogeneous dual-core and three-core
systems. The results are presented for non-bursty traffic. Each

When two tasks of
the same workload
type (suitable for
core A) arrive at the
system together…

Directed to only
most suitable core.

Directed to most
suitable core available.

the tasks can be
scheduled in two
different ways:

Core A Core B

tasks:

design employs the very best combination of core designs for
light traffic loads, determined through an exhaustive search.
The three-core design employs the customized cores of mcf,
parser and twolf, while the dual-core design employs the cus-
tomized cores of parser and vpr.

0
1
2
3
4
5
6
7
8

0.005
5
0 .170

5
0.335

5
0.500

5
0.665

5
0 .830

5
0.995

5
1.160

5
1.325

5
1.490

5
1.655

5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Three-core design
Dual-core design

1

1.5

2

0.005
5

0.115
5

0.225
5

0.335
5

0.445
5

0.555
5

0.665
5

0.775
5

0.885
5

Average task arrival rate (Hz)
Figure 11: Average turnaround time in heterogeneous
dual-core and three-core systems designed for lightly-
loaded traffic.

These results show that the extra core of the three-core sys-
tem provides minor performance advantage over the dual-core
design in light traffic loads (~4%). That of the quad-core de-
sign (not shown here) over the three-core design is even less.
This means that the microarchitectural diversity of strong het-
erogeneity in a dual-core system is sufficient to cover most of
the workload diversity in SPEC2000 integer benchmarks. With
more diverse task workload types, a greater number of cores
may be able to provide greater performance enhancement in
light traffic loads. The throughput advantage of the three-core
design over the dual-core design is as expected.

Figure 12 compares the average task turnaround times of the
best dual-core, three-core and quad-core designs for non-
bursty heavily-loaded task arrival (1.4 tasks-per-second). Un-
surprisingly, the system bandwidth increases with the number
of cores. Interestingly, the best combination of cores for the
three-core design was found to consist of the customized cores
of twolf, vpr and crafty, while that of the quad-core design
consists of the customized cores of parser and twolf along with
two of vpr. This shows that as the number of cores increases,
the best combination of cores for heavily-loaded traffic be-
comes less heterogeneous. Specifically, notice that the custom-
ized core of mcf, which is a very specialized design, was
among the best three cores for lightly-loaded traffic, but not
for heavily-loaded traffic.

0

2

4

6

8

10

0.005
5

0.335
5

0.665
5

0.995
5

1.325
5

1.655
5

1.985
5

2.315
5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Best dual-core design
Best three-core design
Best quad-core design

Figure 12: Average turnaround time in heterogeneous sys-
tems designed for heavily-loaded traffic.

In Figure 13, the average task turnaround time of the best
three-core design for non-bursty heavily-loaded traffic (as seen
in Figure 12), is superimposed on that of the best three-core
design for non-bursty lightly-loaded traffic (as seen in Figure
11). Comparing these results with those of Figure 1 indicates
that, as the number of cores increases, the performance profile
of systems optimized for heavy traffic and that of systems op-
timized for light traffic become less similar. The performance

difference in light traffic load increases, and so does the dif-
ference in their saturation points.

Also shown in Figure 13, is the average task turnaround time
of the best homogeneous three-core design for light traffic
loads, employing the customized core of vpr. The results show
that, in heavier traffic loads, the homogeneous design actually
outperforms the heterogeneous design optimized for light traf-
fic loads, although it does ultimately saturate at a lower arrival
rate. This is contrary to what was observed for dual-core sys-
tems, where the heterogeneous design outperformed the ho-
mogeneous design across the board (see Figure 1).

0

2

4

6

8

10

0.005
5
0 .170

5
0.335

5
0.500

5
0.665

5
0 .830

5
0.995

5
1.160

5
1.325

5
1.490

5
1.655

5
1.820

5

Average task arrival rate (Hz)

A
vg

. t
ur

na
ro

un
d

tim
e

(S
ec

.)

Best three-core for light loads
Best three-core for heavy loads
Best homogeneous three-core

1

1.5

2

2.5

0.005
5

0.225
5

0.445
5

0.665
5

0.885
5

1.105
5

1.325
5

Average task arrival rate (Hz)
Figure 13: Average turnaround time in the best heteroge-
neous three-core systems for non-bursty heavy and light
traffic loads.

The cause of this difference is the fact that a larger number
of cores allows for the employment of core designs that are
more application-specific and potentially less balanced in the
number of workload types they are suitable for. For instance,
the customized core design of mcf provides extremely poor
performance for benchmarks other than mcf, placing burden on
the other two cores. This imbalance is not an issue of concern
in light traffic loads, but bares its toll in heavier-loaded traffic
by causing inefficient utilization of the resources.

6. Practical Implications

An abstract conclusion that can be drawn from the results of
this study is that accurately accounting for the pattern of task
arrival is critical to fair performance evaluation of different
design solutions for a processing system. However, the ques-
tion is what this implies for practical performance evaluation
and design space exploration. We address the implications in
the following subsections.

6.1. Task Arrival Benchmarking

Traditionally, benchmark vendors have only provided the
mix of instruction level behavior that typical processing sys-
tems observe (and, thus, need to perform well under). How-
ever, the empirical results presented here show that it is also
important to accurately account for the typical pattern with
which tasks of such different instruction level behavior arrive
at the system. Specifically, averaging out irregularity in the
task arrival pattern can lead to misleading conclusions regard-
ing the relative performance of different design solutions.

Averaging out task arrival characteristics is analogous to us-
ing a microbenchmark that merely mimics the frequency of
occurrence of different types of instructions, in the evaluation
of single-thread performance. However, while extracting real-
istic instruction level behavior can be achieved by simulating
the execution of representative applications, extracting realis-
tic task arrival behavior can be more challenging. What is
needed to extract representative task arrival patterns is an in-

frastructure for recording the pattern of task arrival and the
instruction level behavior of each task in a real environment.

Some may argue that it is impractical to expect yet another
facet of workload behavior to be accounted for, as perform-
ance evaluation is challenging as it is. We, however, argue that
measuring the effect of task arrival behavior on overall per-
formance requires considerably less simulation resources than
that necessary for further accuracy in other aspects of the
evaluation methodology (e.g., simulating larger regions of
instruction-level code). Moreover, the aggregate effect of in-
accurate assumptions about different aspects of the task arrival
behavior can be considerably large (note that the effect of the
different characteristics are evaluated individually in the re-
sults presented here). In addition, it is important to realize that
had microarchitecture research been mostly based on qualita-
tive evaluations, it would be legitimate to question the essen-
tiality of further evaluation accuracy – but it requires limited
pursuit of related literature to realize that that is not the case.

Note that the task arrival characteristics may also depend on
architectural parameters. For instance, the degree of burstyness
may be dependent on the number of cores in the system. Simi-
larly, the task arrival rate may be dependent on the rate at
which tasks are completed in the system (the performance of
processing nodes). It is important that such dependencies also
be reflected in the task arrival trace. In this case, the task arri-
val traces need to be in the form of parameterized stochastic
models.

6.2. Robustness to Variation in the Task Arrival Be-
havior

Overall performance has traditionally been measured as
some form of mathematical aggregation of performance across
a number of different benchmarks of instruction level behav-
ior. However, a design that provides the best performance
from the standpoint of one form of aggregation (e.g., harmonic
mean) may have suboptimal performance from the standpoint
of another (e.g., arithmetic mean).

Any form of aggregation can be considered to be represen-
tative of some form of task arrival behavior. Thus, the results
of this study can be interpreted as indication of the fact that it
is important to account for the robustness of a design solution
to different forms of measuring overall performance (and the
task arrival pattern each represents).

In fact, just as it is not correct to evaluate the performance
of a design based on how well it performs under a specific
instruction level benchmark, it is not correct to evaluate a sys-
tem based on how well it performs under a single specific task
arrival pattern – but should rather be evaluated across a range
of task arrival patterns. Therefore, a number of different task
arrival patterns that are representative of different environ-
ments need to be provided by benchmark vendors. In this
manner, the performance of a processor design can then be
documented for different task arrival patterns.

Finally, it is in light of the importance of robustness to
variation in the task arrival pattern that the value of Core-
Selectability [19] is fully exposed (see related work).

7. Related Work

The effect of message traffic on multi-computer perform-
ance has been widely studied in literature related to the evalua-

tion of interconnection networks [1, 11]. However, the objec-
tive of such studies is to determine the best topology, switch-
ing techniques and routing algorithms for the interconnection
network of a multi-computer system.

The effect of task arrival behavior on the design of the
core(s) of processing systems has been of limited attention.
The most relevant work is a study of heterogeneous multi-core
design by Kumar et al. [2], in which the issue of job arrival
rate in multi-core systems is examined. The work shows the
benefit of single-ISA heterogeneity in providing greater execu-
tion throughput with limited die area, under the assumption
that larger cores provide monotonically higher execution per-
formance. In later work, the authors examine heterogeneity in
the presence of non-monotonic difference in performance be-
tween the cores [3], and find the potential performance benefit
to be larger.

Other studies that have focused on core design in multi-core
systems do not account for the effect of the task arrival charac-
teristics, and effectively resort to constraining assumptions
about task arrival. For instance, Lee and Brooks study the ef-
fect of pipeline complexity on the performance-power tradeoff
in chip multi-processor designs [4]. But the experimental
methodology only accounts for tasks of different workload
types arriving at the system in isolation from each other.

Strozek and Brooks propose a customization engine that is
built on an automated method for determining an efficient ar-
chitecture for a group of workloads [12]. This is used to design
heterogeneous chip-multiprocessors that can execute a range
of applications efficiently. However, in the experimental
evaluations, only the execution time of individual benchmarks
is accounted for, not the turnaround time. In other words, the
effect of contention between tasks is not accounted for.

Winter and Albonesi study task scheduling algorithms in a
chip multi-processor system that is rendered heterogeneous
due to hard faults or wear-out [5]. Here, too, overall perform-
ance is measured by accounting for the performance of differ-
ent workloads (specifically, the SPEC2000 benchmarks) when
submitted to the system in isolation. Thus, it is tacitly assumed
that tasks will be arriving at the system in a manner that no
contention occurs among them.

The issue of how to direct tasks of different workload types
to the most suitable core in a heterogeneous multi-core system
is the most widely studied related work (see [6] for a list of
related studies). In the empirical evaluations of this paper, we
assume that the most suitable core for a task of a certain work-
load can be determined in an oracle manner.

Another related issue is cache fairness [7], which is con-
cerned with how shared cache is divided between concurrently
executed threads/tasks. Shared caches are not employed in the
empirical evaluations of this study. This prevents the influence
of potentially adverse cache sharing on evaluation results
without the need to employ specific cache fairness mecha-
nisms. The effect of the task arrival behavior may differ con-
siderably in systems that employ shared cache and no cache-
sharing mechanism, and concurrent threads may impact each
other’s performance.

Conte [18] previously used a simulated annealing explora-
tion process to optimize the cost of a processor design by vary-
ing the number and pipeline depth of functional units, while
not allowing the IPC to degrade lower than a fixed threshold.
In this study, simulated annealing was also employed to tracta-
bly explore the large core design space and derive a palette of
core designs. Here, however, the performance of a design solu-

tion was measured as a function of IPC and clock frequency,
while accounting for the pipeline depth of different design
units.

In a recent related study, we proposed Core-Selectability
[19]. In this design approach, each core in a CMP is replaced
with a cluster of multiple differently-designed cores, called a
node, with the option to dynamically select which core to ac-
tively employ. Only one core in each node need be actively
employed at each instance of time, as the purpose of the dif-
ferent cores is to provide microarchitectural diversity, rather
than concurrency. As part of the empirical evaluation of that
study, we explored the performance of multi-core designs un-
der bursty and non-bursty task arrival patterns. Core-
selectability enables dynamic configuration of a CMP to
achieve different homogeneous or heterogeneous designs, ren-
dering the system robust to different task arrival behavior.

8. Discussion: The Shortcomings of this Study

A simplification used in the experimental methodology of
this study is that the amount of time a task occupies a core is
determined by only the instruction-level behavior of the task
(i.e., which benchmark) and the design of the core it will be
executed on (i.e., which customized core design is used).
However, in a more realistic setting, the need for access to
shared resources such as the buses and shared cache can create
contention between concurrent threads [14]. More accurate
evaluation, that can model such contention, requires a more
detailed simulation environment.

It has been shown that there is minimal inter-thread conten-
tion between integer threads (e.g., [13]). However, in studying
the impact of task arrival behavior with broader workload di-
versity, that includes floating-point benchmarks, such interplay
will need to be accounted for. Accounting for the impact of
this interplay will be more challenging as it requires some
form of modeling the contention between tasks of different
workload types and its influence on execution performance.

In commercial processor design, the overall merit of a de-
sign solution is usually dependent on not only measures of
performance, but also factors such as design effort and power
consumption. Although we do not quantitatively account for
such factors in this study, they deserve much attention. For
instance, in addition to the observations expressed here regard-
ing performance, the greater design effort associated with het-
erogeneous designs and the greater power consumption of
wide processor designs need to be accounted for. These factors
can be more difficult to accurately quantify outside of an ac-
tual development environment.

9. Conclusion

The bottom line is that the pattern of task arrival can influ-
ence the best core design(s) to employ in the system, and the
optimality of a given design solution.

The results of this study show that accounting for an unrep-
resentative task arrival rate can result in up to 11% subopti-
mality in the average task turnaround time. And accounting for
an unrepresentative degree of burstyness in the task arrival
pattern can result in up to 21% suboptimality in the average
task turnaround time.

It is also shown that, when there is irregularity in the charac-
teristics of the task arrival pattern, it is not accurate to average

out the different characteristics. For instance, averaging out the
degree of presence of different workloads in the workload mix
can result in up to 12% suboptimality in the multi-core design
determined as the best design solution. This means that not
only are the parametric rates that characterize the task arrival
behavior of crucial importance, but also the pattern with which
they vary. Therefore, it is important that benchmark vendors
provide not only the mix of typical instruction level behavior,
but also representative arrival patterns for tasks with such in-
struction level behavior.

Acknowledgements

We would like to thank the anonymous reviewers for their
valuable feedback. This research was supported in part by NSF
grant No. CCF-0811707, and funding from Intel and IBM.
Note that any opinions, findings, and conclusions or recom-
mendations expressed herein are those of the authors and do
not necessarily reflect the views of the National Science Foun-
dation.

References

[1] W. J. Dally, B. Towles, “Principles and Practices of Interconnec-

tion Networks”, Morgan Kaufmann, 2004.
[2] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, K. Farkas.

"Single-ISA Heterogeneous Multi-core Architectures for Multi-
threaded Workload Performance". In 31st International Sympo-
sium on Computer Architecture, ISCA-31, 2004.

[3] R. Kumar, D. Tullsen, N. Jouppi. “Core Architecture Optimiza-
tion for Heterogeneous Chip Multiprocessors". International
Conference on Parallel Architectures and Compilation Tech-
niques, PACT, 2006.

[4] B. C. Lee and D. Brooks. “Effects of Pipeline Complexity on
SMT/CMP Power-Performance Efficiency,” Workshop on Com-
plexity Effective Design 2005 (WCED2005, held in conjunction
with ISCA-32), 2005.

[5] J.A. Winter and D.H. Albonesi, “Scheduling Algorithms for Un-
predictably Heterogeneous CMP Architectures”, 38th Interna-
tional Conference on Dependable Systems and Networks, 2008.

[6] M. Becchi, P. Crowley, “Dynamic thread assignment on hetero-
geneous multiprocessor architectures”, Conf. Computing Fron-
tiers, 2006.

[7] S. Kim, D. Chandra, Y. Solihin, “Fair Caching on a Chip
Multiprocessor Architecture”, Proc. of IBM Watson Conference
on Interaction between Architecture, Circuits, and Compilers
(P=ac2), 2004.

[9] Advanced Micro Devices, “AMD Opteron™ Processor Product
Data Sheet”, 2007.

[10] K. Chakraborty, P. M. Wells, G. S. Sohi, “Computation spread-
ing: employing hardware migration to specialize CMP cores on-
the-fly”, Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2006.

[11] J. Balfour, W.J. Dally, “Design tradeoffs for tiled CMP on-chip
networks”, Proc. of the 20th Int’l Conf. on Supercomputing,
2006.

[12] L. Strozek, D Brooks, “Efficient architectures through applica-
tion clustering and architectural heterogeneity”, International
Conference on Compilers, Architecture, and Synthesis of Embed-
ded Systems, CASES, 2006.

[13] Y. Xie, Gabriel H. Loh, “Dynamic Classification of Program
Memory Behaviors in CMPs”, In the 2nd Workshop on Chip
Multiprocessor Memory Systems and Interconnects (CMP-MSI),
2008.

[14] D. Chandra, F. Guo, S. Kim, Y. Solihin, “Predicting Inter-
Thread Cache Contention on a Chip Multi-Processor

Architecture”, Proc. of the11th International Symposium on High
Performance Computer Architecture (HPCA), 2005.

[15] S. J. E. Wilton and N. P. Jouppi, “CACTI: An enhanced cache
access and cycle time model”, IEEE Journal of Solid-State Cir-
cuits, 31(5):677–688, 1996.

[16] E. Larson, S. Chatterjee, T. Austin, “The MASE Microarchitec-
ture Simulation Environment,” Int’l Symposium on Performance
Analysis of Systems and Software, 2001.

[17] S. Thoziyoor, N. Muralimanohar, J. Ahn, N. Jouppi, “CACTI
5.1”, Technical Report HPL-2008-20, HP Labs, 2008.

[18] T. M. Conte, "Systematic Computer Architecture Prototyping,"
Ph.D. Thesis, University of Illinois, 1992.

[19] H. H. Najaf-abadi, N. K. Choudhary, E. Rotenberg, “Core-
Selectability in Chip Multiprocessors”, Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT), 2009.

