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Abstract—The centralized structures necessary for the extrac-
tion of instruction-level parallelism (ILP) are consuming pro-
gressively smaller portions of the total die area of chip multi-
processors (CMP). The reason for this is that scaling these 
structures does not enhance general performance as much as 
scaling the cache and interconnect. However, the fact that 
these structures now consume less proportional die area opens 
an avenue to enhancing their performance through truly over-
coming the one-size-fits-all approach to their design. 
This paper proposes core-selectability – incorporating differ-
ently-designed cores that can be toggled into active employ-
ment. This enables differently customized ILP-extracting 
structures to be at hand in the system while not dramatically 
adding to the interconnect complexity. The design verification 
effort is minimized by separating the complexity of different 
core designs. Moreover, contrary to alternative approaches, 
the performance and power efficiency of the core designs are 
not compromised. 
Evaluation results are presented that show that, even when 
limiting the diversity between core designs to only the sizing of 
microarchitectural structures, core-selectability has the poten-
tial to provide notable performance enhancement (with an 
average of 10%) to scalable multithreaded applications, with-
out increased concurrency. In addition, it can provide signifi-
cantly greater throughput to multiprogrammed workloads by 
providing the potential for the system to transform into a het-
erogeneous design. 

Chip Multiprocessor; Heterogeneity; Microarchitecture 

I.  INTRODUCTION 
In the design of a chip multiprocessor (CMP), if the bal-

ance in resource provisioning is to be maintained, an increase 
in the number or performance of processing cores requires an 
increase in the cache and interconnection resources. This 
does not necessarily mean that all applications utilize the 
provisions to the fullest extent, however. By overcoming the 
instruction-level bottlenecks of applications that underutilize 
the cache and interconnect, it is possible to enhance their 
execution performance, and yet maintain the balance in pro-
visioned resources. This will result in better utilization of 
provisioned cache and interconnect. 

A major factor that inhibits instruction-level performance 
enhancement is the one-size-fits-all approach to the design of 
the centralized units necessary for extracting instruction-
level parallelism (ILP), e.g., the issue-queue, load/store 
queue (LSQ), reorder buffer (ROB). This is a result of the 
inherent criticality of these units, which renders them im-
practical for dynamically changeable design solutions (i.e., 
reconfiguration). If it were possible to genuinely adjust the 

configuration of these units to suit the application at hand, 
notable instruction-level performance could be gained.  

Meanwhile, as merely scaling the size of the ILP-
extracting units does not necessarily improve their general 
performance, the actual cores in CMPs have been consuming 
progressively smaller portions of the physical layout. This 
opens an avenue to a different form of instruction-level per-
formance enhancement: replacing each core in the CMP with 
a cluster of multiple differently-designed cores, called a 
node, with the option to dynamically select which core to 
actively employ. The purpose of these different cores is to 
provide microarchitectural diversity, rather than concur-
rency. Thus, only one core in each node need be actively 
employed at a time. This allows for the cores in a node to 
share the complex resources that interconnect nodes together 
in the CMP, and maintain the original provisioning of these 
resources. We refer to this technique as core-selectability, as 
its main benefit comes from the ability to select the microar-
chitectural design to be employed. 

This technique can achieve what reconfiguration aspires 
to achieve. It is a scalable solution to using the available 
transistors to enhance multithreaded performance without 
overly increasing design complexity, verification effort or 
power consumption. It allows for the microarchitecture de-
sign effort to be partitioned and focused on specific types of 
workload behavior, rather than attempting to pack everything 
into one complex design solution. Moreover, it provides the 
potential for the system to transform into a heterogeneous 
design (and even different forms of heterogeneity), enabling 
greater throughput to multiprogrammed workloads [30] and 
better performance to critical-section intensive multithreaded 
workloads [29]. 

In this study we investigate the implications and benefits 
of implementing core-selectability in a general-purpose chip 
multiprocessor. In the experimental evaluation, the consid-
ered core designs are based on propagation delays observed 
for different microarchitectural structures attained from a 
detailed synthesizable HDL model of a superscalar processor 
in 45nm technology. 

The following section provides background and an over-
view of related work. The implementation of core-
selectability is described in Section III. Our evaluation meth-
odology and choice of core designs are outlined in Section 
IV. Section V presents evaluation results that illustrate the 
performance benefit of core-selectability under a wide range 
of multithreaded benchmarks when the cores have the same 
clock period. In Section VI, we present results showing how 
core-selectability can improve task turnaround time and exe-
cution throughput under multiprogrammed workloads. Fur-
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ther discussion is presented in Section VII, and Section VIII 
concludes this study. 

II. BACKGROUND  
A. Customized Design of Processing Cores 

Prior work has shown that there is significant perform-
ance benefit in employing customized core designs for dif-
ferent workload behavior [11] [30]. Nevertheless, when lim-
ited to a single core design, the best solution is one that pro-
vides reasonable performance across a wide range of work-
load behavior. Thus, the different units of a general-purpose 
processing core need to be designed in anticipation of typical 
workload behavior. Such a system will perform suboptimally 
when the actual workload being executed on the system dis-
plays atypical behavior – with undersized structures degrad-
ing IPC and oversized structures wasting propagation delay. 
And yet, in a general purpose system, all workload behavior 
can be atypical. 

The characteristics of the employed technology can also 
impact the best tradeoffs in the design of a processing core. 
For instance, extracting greater parallelism requires more 
complex logic (and longer propagation delays), which either 
results in deeper pipelining or an increased clock period. 
While increasing the clock period can directly degrade per-
formance, deeper pipelining can impact the cycle delay be-
tween the wakeup of dependent instructions, adversely im-
pacting parallelism. 

Moreover, intricate circuit-level details can dramatically 
sway the best design tradeoffs for a given workload behav-
ior. For instance, the unified clock period intertwines the 
different microarchitectural design units. Thus, in a high-
performance design, the scaling of any unit must either result 
in change in the pipeline depth of that unit or it must be ac-
companied by proportional scaling in the propagation delay 
of all other units (to enable frequency scaling). To make 
things even more complicated, different units of the design 
tend to scale differently and are not ideally pipelinable. This 
can result in pipeline slack, which increases effective propa-
gation delay, and degrades performance.  

The ability to employ different core designs opens the 
door to a much broader overall system design space, and the 
potential for considerable performance gain. One aspect of 
this design space is the manner in which the workload space 
should be split up between the cores, for each to be custom-
ized to [31]. Another aspect is the customization of core de-
signs to their constituent workload behavior. Correctly ex-
ploring this design space requires core customization in 
which intricate circuit-level details are accurately accounted 
for. In this design space, abstracting away the circuit-level 
details can lead to inaccurate assessments and the adoption 
of severely suboptimal design solutions. 
B. A Circuit Level Model 

In order to be able to account for circuit-level details, and 
conduct accurate core customization, we have developed a 
fully-synthesizable Verilog model of a contemporary pipe-
lined out-of-order superscalar processor [24]. This model has 
parameterized microarchitectural features, and is aimed at 
high-fidelity design space exploration. It enables evaluation 

of the effect of the propagation delay and pipeline depth of 
different microachitectural units on overall performance un-
der any technology characteristics. The results presented in 
this study are based on results attained from the synthesis of 
different configurations in 45nm technology. 

As an example, Figure 1 shows the propagation delay of 
the select logic, extracted from the model, when the issue-
queue size and issue width are scaled. These results show 
that, for a specific propagation delay, there is a tradeoff be-
tween the size of the issue queue and the issue width. The 
best tradeoff depends on the workload behavior. 
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Figure 1.  Propagation delay of the selection logic in 45nm technology,   

when the issue width and issue-queue size vary. 

C. The Overhead of Reconfigurability 
One approach to enabling different workloads to be exe-

cuted on suitable core designs is through reconfigurability. In 
implementing reconfigurability, there is a tradeoff between 
the flexibility of the design and the overhead introduced to 
the system. Adaptable architectures [2] have less overhead, 
but provide less flexibility in the design. In contrast, FPGA-
based reconfigurability [1] provides high flexibility at the 
cost of large overheads. Nevertheless, in critical microarchi-
tectural units the overhead of even the most inflexible forms 
of reconfigurability can outweigh the would-be benefit. 

Although prior studies have proposed adaptable imple-
mentations of various microarchitectural units, their focus 
tends to be on reducing power consumption when needed, 
with minimal performance degradation. Achieving perform-
ance enhancement through adaptability, however, is more 
challenging. 
1) Reconfigurability in the logic 

An example of the difficulty in implementing recon-
figurability can be observed in the superscalar wakeup logic. 
The main component of propagation delay in the wakeup 
logic is the load on the rails that broadcast newly issued in-
struction tags to the comparators that compare them with 
those of waiting instructions.  

Downsizing the effective issue-queue size can, in theory, 
be achieved by switching off the load of the unwanted com-
parators. In practice, however, switching off the capacitance 
can only be achieved through buffering a portion of the 
broadcasting rail, as shown in Figure 2. Such buffering will 
provide the effect of a repeater when the issue-queue is not 
downsized [2]. But, since the buffer will need to be large 
enough to drive the rest of the broadcasting rail, it will per-
manently place a large extra load on the rail, increasing the 
propagation delay of the downsized portion.  

 



 
Figure 2.  Reconfiguration in the issue-queue size. 

Using the optimal repeater placement of SoC Encounter, 
it was found that in 45nm technology the best design for a 
128-entry issue-queue consists of 4 large buffers, each with 
9fF input capacitance, driving all the issue-queue compara-
tors in a tree structured layout. Implementing the ability to 
downsize the issue-queue within this circuitry results in a 
notably larger propagation delay compared to custom down-
sized issue-queue designs.  

Table 1 shows the propagation delay of the wakeup and 
select logic in a 4-wide issue-queue with a maximum size of 
128 entries that can dynamically be downsized. Also shown 
in this table is the propagation delay for custom downsized 
issue-queue designs. These results show that, the reconfigur-
able design, at its full size (of 128 entries) is 15% slower 
than a same-sized custom design. For smaller issue-queue 
sizes, the reconfigurable design becomes even slower rela-
tive to same-sized custom designs – with 46% longer propa-
gation delay for the 16-entry size. Therefore, although there 
may be some benefit in this form of reconfigurability, it is far 
from the true benefit of customization.  

TABLE I.  EFFECT OF ISSUE-QUEUE SIZE ON PROPAGATION DELAY 
WITH AND WITHOUT RECONFIGURABILITY  

Issue-Q 
size 

Wakeup 
Delay (ns) 

Select Delay 
(ns) 

Wake & Select 
Delay (ns) 

Reconfig. 
Delay (ns) 

16 0.55 0.54 1.09 1.55 
32 0.635 0.59 1.38 1.89 
64 0.67 0.65 1.62 2.1 
128 0.82 0.76 2 2.3 

 
 

Implementing reconfigurability in the issue width is even 
more challenging. The dependent instruction tags of waiting 
instructions are connected to as many comparators as there is 
issue width. The extra load of the unnecessary comparators 
in the downsized setting can not be dynamically removed 
from the circuit without inserting extra buffering. This buff-
ering introduces extra load in the system, which degrades 
performance.  

Nevertheless, the direct overhead in propagation delay is 
not the only factor inhibiting performance gain from such 
reconfigurability. 
2) Reconfigurability in the pipeline structure 

Even if certain microarchitectural units were to be made 
optimally adaptable at the logic-level, the most difficult fac-
tor in attaining performance benefit from such reconfigura-
bility is in connection with the tight pipelining of high-
performance processor designs. 

In fact, selectability, as a general concept, can be em-
ployed to create reconfigurability in any microarchitctural 
unit (providing the ability to select from among different 
implementations of a unit). Moreover, adaptable caches [32] 
have been shown to be implementable with fairly low over-
head. However, it is challenging to draw on such confined 
reconfigurability without causing slack and imbalance in the 
pipeline structure, as different design units scale differently 
and some do not scale at all.  

For instance, the operation of the functional units is de-
termined by the ISA and is unaffected by the microarchitec-
tural configuration. Moreover, the functional units reside 
within the feedback loop of any microarchitecture, and any 
slack in the pipeline stages of the functional units will impact 
the raw performance of the system. Such portions of a proc-
essor design need to be pipelined with slack in low clock 
frequency configurations for correct functionality in high 
frequency configurations. 

Dynamic pipeline scaling (DPS) provides the potential 
for variable depth pipelining of a microarchitectural unit 
[21]. This can theoretically enable the independent scaling of 
different design units, while preventing slack in any pipeline 
stage. In practice, however, DPS introduces overhead in the 
form of extra latch propagation delay and power consump-
tion. More importantly, it is only practical for multiplying or 
dividing the clock frequency, which dramatically limits the 
viable design space.  
3) The verifiability of reconfigurability 

Design verification needs to be accounted for in high 
level design choices as it has become the major consumer of 
man-hours in the development of modern processors [33]. It 
has been shown that design symmetry reduces verification 
cost by mitigating the effective number of functional states 
that need to be accounted for [5].  

Reconfigurability, however, desymmetritizes the design 
of a processing core by creating differences between portions 
of the microarchitecture that would otherwise be identical. 
For instance, in the implementation of an adaptable issue-
queue, the entries that are disabled in the down-sized mode 
differ from those that are not disabled. In addition, the logic 
that implements reconfigurability itself is inherently not 
symmetric. This can lead to an explosion in the number of 
states, and a potentially exponential increase in verification 
effort. 

Verifiability is not only an issue of concern in recon-
figurable designs. Any design solution that attempts to push 
the limit on overall performance will inevitably be more 
complex and less symmetric, requiring greater design verifi-
cation effort. Core-selectability allows for the design com-
plexity of each design solution to be limited, by focusing on 
only the constituent workload behavior.  
D. Increasing Concurrency 

Question: What is preventing manufacturers from em-
ploying a larger number of processing cores in their chip 
multiprocessor designs than they currently are?  

Merely replicating the cores themselves consumes no ex-
tra design or verification effort. Moreover, each additional 
core consumes incremental die area. The issue is not chip 
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yield either – with companies such as IBM already employ-
ing multi-die-in-package design solutions (or Multi-Chip 
Module technology) [22]. Therefore, the main reason must 
lie in the complexity and design effort added cores introduce 
to the interconnection network and cache hierarchy, in addi-
tion to a limited power budget. 

As illustrated in Figure 3, in conventional chip multi-
processor design, increasing the number of cores in the sys-
tem necessitates more interconnect bandwidth and cache 
capacity. This increases not only core-to-core latency, power 
consumption and manufacturing cost, but also design and 
verification cost. In general, the major problem with on-chip 
networks is that they simply do not scale very well.  

Nevertheless, the issue of concern here is not cost per se 
(as it is natural for greater performance to entail higher cost), 
but rather wastefulness. It is wasteful to dedicate further re-
sources to any portion of the design before it has been fully 
utilized. However, a large portion of workloads tend to un-
derutilize the cache and interconnect. The fundamental rea-
son for this is that workloads that place high demand on 
these resources are more dominant in influencing what en-
tails a well provisioned design – as insufficient provisioning 
dramatically degrades their performance (and consequently 
overall performance).  

 
Figure 3.  Complexity of the interconnection in a conventional design. 

Adding cores to a system without increasing the provi-
sioned interconnection resources can alternatively be 
achieved by splitting the existing resources between the 
cores (i.e. splitting the channel bit-width in crossbar-based 
interconnect, and the bisection-width in tile-based). How-
ever, if doing so yields better overall performance it indicates 
that the interconnect was originally over-provisioned any-
way. Moreover, the overhead of this form of increasing con-
currency permanently impacts the system – such that appli-
cations that are inherently less scalable permanently observe 
performance degradation.  

All in all, we believe that an objective should be to en-
hance the instruction-level performance of workloads that 
underutilize the existing provisions in cache and interconnec-
tion resources, before provisioning more of such resources. 
E. Related Work 
The Conjoined-core [7] approach to Chip Multiprocessor 
design has been proposed as a solution to efficiently increase 
concurrency. The approach is a tradeoff between simultane-
ous multithreading [8] and single-chip multiprocessing [9]. 
Multiple homogeneous cores are added to the processing 
nodes of a CMP, and the cores time-share resources such as 
the floating-point unit, instruction cache, data cache and 
crossbar ports. In this manner, concurrency can be increased 
with fewer resources. The CASH architecture [10] is a simi-

lar approach. L1 cache port sharing has also been employed 
in Sun’s recent Rock processor [28].  

In the implementation of core-selectability, resources are 
also shared between cores. However, the objective is to en-
hance performance through dynamic core customization, 
rather than concurrency. In fact, while the sharing of re-
sources is part of the objective in the conjoined-core and 
CASH techniques (and Rock architecture), it is more of an 
imposition in core-selectability.  

Core-fusion [4] and Composable Lightweight Processors 
[3] are similar techniques to enable reconfiguration of the 
cores in a chip multiprocessor by combining smaller cores to 
form larger ones. This enables the cores to vary and become 
more suitable for the application at hand. However, these 
techniques are not aimed at providing performance benefit to 
scalable multithreaded applications, as maximizing the num-
ber of available cores provides the best overall performance. 
More importantly, the reconfiguration overhead of imple-
menting both techniques manifests itself in the microarchi-
tectural units that are most critical to ILP extraction, i.e., the 
issue-queue, ROB and LSQ. Salverda and Zilles show that 
there are fundamental obstacles to achieving good perform-
ance through core-fusion with in-order cores [23]. 

Previous studies have demonstrated the performance and 
power benefit of heterogeneity over homogeneity in CMPs 
designed for multi-programming environments [11] [12] [13] 
[30]. Heterogeneity entails the employment of differently 
designed cores for the execution of tasks with different 
workload behavior. However, it has also been shown that 
heterogeneity can degrade the performance predictability and 
scalability of multi-threaded applications [14]. 

In panel talks, Patt [27] has suggested the abstract notion 
of employing large specialized units that can be powered 
down when not needed (the “Refrigerator” analogy), as a 
power-efficient approach to putting the growing availability 
of transistors to use. However, to the best of our knowledge, 
no prior work has looked at the option of employing com-
plete processing cores that are differently designed with the 
intent to employ only one at a time.  

Integral to our evaluation methodology is the circuit-level 
modeling of the propagation delay of different microarchi-
tectural units in the design of processing cores. The Illinois 
Verilog Model [16] is functionally the closest to our design, 
although it is not fully synthesizable. Other freely available 
HDL processor models [17] [18] do not represent the com-
plexity of an out-of-order superscalar microarchitecture.  

III. IMPLEMENTATION OF CORE-SELECTABILITY 
The strength of core-selectability lies in its simplicity and 

the absence of microarchitectural invasiveness. Basically, the 
design adjustments needed for implementing core-
selectability are only in the back-end and front-end of the 
core designs. This is essential to minimizing design and veri-
fication effort. Moreover, the main mechanism required to 
implement core-selectability (i.e., port sharing) has been 
proposed and employed elsewhere. Thus, the novelty of 
core-selectability lies in the purpose for which such mecha-
nisms are employed, rather than the mechanisms themselves. 

Memory subsystem  

core 1 

Interconnect  

L1 cache 

core 2 

L1 cache 

core 3 

L1 cache 

core n 

L1 cache 

L2 cache bank 1 L2 cache bank 2 L2 cache bank m 



In the front-end, the cores can share a port to the instruc-
tion cache. However, it is important that each core possess a 
dedicated fetch engine, as this unit is closely tied to the func-
tional units that determine branch outcomes. In the back-end, 
the data-paths of differently designed cores need to share a 
port to the data cache. Only the core that is selected for ac-
tive employment will have access to these ports.  

The cores can be made selectable at the L1 cache level or 
the port to the shared L2 cache. Implementing selectability at 
the L1 level has the advantage of better utilization of die 
area. Selectability at the L2 level has the advantage of ena-
bling L1 cache customization, and places no overhead on the 
more critical L1 cache accesses. In this study we focus on 
implementing core-selectability at the L1 level. The design 
of the Rock processor [28] ensures that, at the very least, 
port-sharing is physically implementable at this level.  

Figure 4 illustrates the basic schematic of a two-way 
core-selectable design. Within each node, the active core 
takes over the port to the L1 data cache. Note that this figure 
only shows the multiplexing of the address signals to the L1 
cache, not how the data paths are directed to both cores.  

 
Figure 4.  Complexity of the interconnection in a core-selectable design. 

Another option in the implementation of core-
selectability is whether or not to allow the different cores to 
have different clock frequencies. Customizing the clock fre-
quency allows for the pipeline depth of the core designs to be 
customized to the characteristics of the workload, and can 
considerably increase the viable design space of the process-
ing cores. When cores with different clock domains are em-
ployed, preventing pipeline slack requires either adaptable 
caches at the L1 level, or asynchronous buffering – which 
results in a form of Globally-Asynchronous Locally-
Synchronous (GALS) design [34]. 
A. The Propagation Overhead of Core-Selectability 

As shown in Figure 5, the multiplexing of access to the 
caches does introduce extra logic to the system. In addition, 
the cores may end up being more physically distant from the 
shared port to the L1 cache than a dedicated core would have 
been.  

Using SPICE analysis with the 45nm FreePDK library 
[19], a wire with a length in the range of 1mm (the diameter 
of a typical core) in the L3 metal layer is estimated to have a 
capacitance no larger than 100fF. In this technology, a mul-
tiplexer designed with pass-transistor logic and optimized for 
up to 100fF input capacitance, was found to display 26 pico-
seconds propagation delay. Therefore, port sharing should 
result in added propagation delay no larger than 26 picosec-
onds. This small propagation overhead is made possible by 

the fact that the sizing of the gate need only be optimized for 
minimal propagation delay, rather than minimal switching 
delay. Nevertheless, the main issue is not the small propaga-
tion overhead, but the fact that the changeability is not im-
plemented within tightly-coupled microarchitectural pipeline 
stages. 

 
Figure 5.  The extra switching and wire propagation delay of port-sharing. 

B. Transferring Execution 
All user-level and system-level instructions execute on 

the currently active core within a node. When the operating 
system scheduler chooses to schedule a task on a core that is 
different from the currently active core, it first finishes up 
what it is doing on the currently active core and then exe-
cutes a final instruction on the currently active core, that si-
multaneously configures the currently active core to be inac-
tive and asserts an external interrupt signal of the core to be 
activated. This implies that (1) a core can assert the activa-
tion interrupt signal of any other core and (2) a core’s exter-
nal interrupt unit is always active whether or not the core is 
active. When an inactive core receives an activation inter-
rupt, it vectors its program counter to an interrupt handler 
that starts the task. 

IV. METHODOLOGY 

A. Customizing the Core Design 
The goal of core customization is to find a global design 

optimum that captures the interplay between workload char-
acteristics, the microarchitecture, and the physical implemen-
tation. Thus, propagation delays of microarchitectural units 
are fundamental to this exercise. To this end, we developed a 
synthesizable Verilog model of an out-of-order superscalar 
processor. Details of this model are available in a prelimi-
nary report [24]. Major components or features are either 
parametrically configurable (e.g., structure sizes) or different 
configurations for them have been explicitly designed (e.g., 
number of superscalar ways in each pipeline stage). Different 
designs were synthesized with Synopsis Design Compiler 
V2005.09-SP3 and placed-and-routed with Cadence SoC 
Encounter V7.1, using the FreePDK OpenAccess 45nm 
Standard Cell Library [19]. 

Since a superscalar processor makes use of many special-
ized and highly-ported RAMs (e.g., rename map table, archi-
tectural map table, shadow map tables, free-list, active-list, 
physical register file, etc.), we also developed a register file 
compiler. It uses custom layouts of multi-ported bit-cells and 
peripheral circuits to generate RAMs and characterize their 
access times (SPICE model extraction). 
B. Multicore Simulation Setup 

We explore the core design space and evaluate the effect 
of core-selectability with full-system simulation using the 
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Virtutech’s Simics simulator [25] extended with the Wiscon-
sin GEMS and OPAL [26] simulators. The GEMS simulator 
provides a detailed memory system timing model, and the 
OPAL simulator provides a detailed microarchitectural tim-
ing model of a processor with the Sparc ISA. The cache and 
interconnection characteristics considered in all studies are 
shown in Table II.  

TABLE II.  CACHE AND INTERCONNECTION CHARACTERISTICS 
NETWORK TOPOLOGY  HIERARCHICAL SWITCH 
COHERENCE PROTOCOL MOESI 
DATA BLOCK BYTES 64 
L1 CACHE ASSOC 2 
L1 CACHE NUM SETS BITS 9 
L2 CACHE ASSOC 4 
L2 CACHE NUM SETS BITS 12 

 
A diverse set of multithreaded benchmarks from the 

Splash-2, Java-grande and SpecJbb benchmark suites, and 
the Blast biometric benchmark, are accounted for. The 
benchmarks and the employed input parameters are listed in 
Table III. The benchmarks were compiled using the PAR-
MACS [40] library from UPC. 

TABLE III.  BENCHMARKS WITH INPUT PARAMETERS 
Suite Benchmark + input parameters 

 barnes 8192 123 0.025 0.05 1.0 2.0 5.0 0.075 0.25 4 
 cholesky -p4 -B128 -C16384 < tk29.o 
 fft -m22 -p4 -n65536 -l4 
 fmm two cluster plummer 8192 1e-6 4 5 .025 0.0 cost zones 
 lu -p4 -n2048 -b64 

Splash2 ocean –n258 -p4 -e1e-07 -r20000 -t28800 
 radiosity -p 4 -room –batch 
 radix -p4 -n2621440 -r2048 -m524288 
 raytrace -a8 -p4 teapot.env 
 volrend 4 head 
 water_spatial < input.p4 
 java -cp .:/RayTracer/jg JGFRayTracerBenchSizeA 4 

Java-Grande java -cp .:/MoldDyn/jg JGFMolDynBenchSizeA 4 
 java -cp .:/MonteCarlo/jg JGFMonteCarloBenchSizeA 4 

Specjbb java -classpath  -propfile specjbb.props 
Blast blastall -p blastn  -d ecoli_nt -a 4 < alu.n 

 

C. The Core Designs 
A major factor in the evaluation of core-selectability is 

the design of the cores employed in the system. The different 
microarchitectural parameters were explored under the con-
straint that the propagation delays of different units remain 
within a certain number of clock cycles. The performance of 
each design solution was evaluated for the benchmarks de-
tailed in Table III. 

The benchmarks were executed on the multithreaded 
simulation setup detailed in the previous subsection for 10 
million instructions. This was preceded by skipping the ini-
tialization phase of each benchmark to arrive at the main 
execution loop, and warming up the caches for 10 million 
instructions.  

The microarchitectural attributes of the best core design 
found for average execution time across all the benchmarks 
are listed under the label Core-U in Table IV. Two other core 
designs were also extracted that, compared to Core-U, pro-
vide notably higher performance on different subsets of the 
benchmarks. The microarchitectural attributes of each of 
these two core designs, which we will refer to as Core-A and 
Core-B, are also listed in Table IV. Each core design attains 
higher performance on a subset of benchmarks at the cost of 
lower overall performance across all benchmarks. In choos-

ing these core designs, care was also taken to limit the design 
space to a fixed clock period, equal to that of Core-U (0.6 
nanoseconds). This was necessary to preserve lucidity in the 
difference between the designs, and prevent the need for 
asynchronous buffering or adaptable caches.  

TABLE IV.  CONFIGURATION OF CORES 

 Core-U Core-A Core-B 
FETCH STAGES 4 3 5 
DECODE STAGES 1 1 1 
RETIRE STAGES 2 2 2 
ISSUE WIDTH 3 2 5 
ROB SIZE 512 1024 512 
IWINDOW SIZE 64 128 32 
Clock period .6ns .6ns .6ns 

 
Core-A provides higher performance to applications that 

have hard-to-access ILP. It has a large issue-queue and yet 
has limited issue width. This allows for the propagation de-
lay of the wakeup-select logic to be focused on looking fur-
ther ahead in the dynamic instruction stream to find the lim-
ited ILP. Core-B, on the other hand, provides higher per-
formance to applications that have easier accessible local 
ILP. It has a smaller issue-queue, yet it has wider issue 
width. This allows for the propagation delay of the wakeup-
select logic to be focused on issuing more instructions per 
cycle. Figure 6 shows the average execution time of Core-A 
and Core-B across all the benchmarks, normalized to that of 
Core-U. 
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Figure 6.  Average execution time across all benchmarks for different core 

designs normalized to that of Core-U. 

Note that Core-A and Core-B are not truly the best core 
designs for core-selectability. However, they do present a 
scenario in which the source of performance difference be-
tween the cores is more lucidly discernable. Moreover, the 
manner in which the different benchmarks display preference 
towards being executed on these cores provides a convenient 
scenario to explain a few factors that need to be considered 
in the incorporated core designs. 

V. RESULTS: MULTITHREADED 
Figure 7 shows the execution time of individual bench-

marks on Core-A and Core-B normalized to the execution 
time on Core-U. These results show that while Core-U dis-
plays the best overall performance across all benchmarks, it 
can display considerably suboptimal performance under in-
dividual benchmarks. The results also show that for all the 
benchmarks, other than RayTracer, either Core-A or Core-B 
performs better than Core-U. In addition, for all benchmarks, 
other than the biometric benchmark (Blast), either Core-A or 
Core-B performs worse than Core-U.  

Core-selectability allows for the user to dynamically pick 
and choose the employed core design. Thus, a two-way core-
selectable design that employs Core-A and Core-B, will be 



able to perform better than Core-U across almost all bench-
marks. However, for the benchmark RayTracer, this solution 
will perform 20% worse than Core-U alone.  This highlights 
the importance of good design space exploration for the em-
ployed cores. Ideally, the core designs should provide higher 
performance than the best single design to collectively ex-
haustive subsets of the workload space. In addition, the more 
mutually exclusive the subsets are, the more potential there 
will be for performance gain. 
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Figure 7.  Execution time of each benchmark on each core design 

normalized to the execution time on Core-U. 

The benchmarks for which Core-A and Core-B provide 
higher performance than Core-U are almost mutually exclu-
sive and almost collectively exhaustive. Nevertheless, it may 
be of importance that absolutely none of the benchmarks 
display lower performance than the baseline design (even if 
average performance is improved). If that is the case, the 
core design space needs to be explored more rigorously. One 
option is to increase the number of selectable cores, and em-
ploy one that is customized for RayTracer. A more straight-
forward solution is to employ Core-U as one of the selectable 
core designs.  

Figure 8 shows the average execution time for three com-
binations of two-way core-selectable designs normalized to 
the execution time of the baseline design, Core-U. These 
results show that the best overall performance for two-way 
core-selectability is attained with Core-A and Core-B, show-
ing an average performance enhancement greater than 10%. 
Core-selectability between Core-U and Core-B, will not dis-
play performance lower than the baseline design on any 
benchmark. But it attains a smaller overall performance en-
hancement, of close to 7%, compared to Core-U alone. 
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Figure 8.  Execution time of core-selectability with different combinations 

of cores, normalized to that of Core-U. 

Another option is core-selectability between all three 
core designs (Core-A, Core-B and Core-U). The average 
decrease in execution time for this scenario (also shown in 
Figure 8) is over 11%, while not displaying performance less 
than the baseline design under any of the benchmarks. How-

ever, increasing the number of selectable cores will increase 
the overhead in propagation delay.  
A. The Overhead of Selectability 

As discussed in the implementation section, core-
selectability can introduce minor overheads to the front-end 
and back-end of the core designs.  

Accounting for the multiplexing of address signals to the 
L1 data cache and the extra wire load, the propagation delay 
in the back-end was found to not be increased by more than 
26ps. This delay is conveniently less than the slack observed 
in the L1 cache access time for all core designs. Although 
this can not be generalized to an arbitrary design, cache ac-
cess time does vary in steps (with the associativity or number 
of sets) and the optimal core clock period is dependent on 
many microarchitectural parameters.  

We do not repeat such an evaluation here, as the effect of 
increased propagation delay in the front-end has been studied 
elsewhere, and the core designs considered here are not the 
very best for core-selectability anyway.  
B. The Source of Performance 

We investigated the source of performance enhancement 
by looking at the code of the benchmark that displays the 
largest performance gain from a customized core design, 
Moldyn (from Java-Grande). This benchmark simulates mo-
lecular dynamics. The main program loop of the application 
performs force calculations between only particles that are 
within a certain distance of one another. There is little local 
ILP within each iteration of the main loop of the application. 
But with a high enough window it is possible to reach future 
iterations [38], which are mostly independent. It is for this 
reason that the application gains such large performance 
through increasing the issue-queue size at the cost of nar-
rower issue width. 

One may argue that this form of distant parallelism may 
be better extractable with simultaneous threads [8]. But we 
argue that the performance gain of core-selectability is or-
thogonal to that of simultaneous multithreading. This is be-
cause, even with simultaneous multithreading (SMT), upsiz-
ing the issue-queue will yield better performance with such a 
benchmark (compared to the best design across all bench-
marks), as it will enable the extraction of parallelism within 
individual threads. Of course, this is assuming that the scal-
ability of the application is not such that SMT just happens 
to finish off all remaining parallelism. However, due to the 
lack of simultaneous multithreading in the OPAL simulator, 
we were unable to quantitatively verify this. 

Although there is thread-level parallelism in this applica-
tion, it has been shown that it is difficult to extract without 
speculation support [38]. Core-selectability enables extrac-
tion of this parallelism without burdening the design compo-
nents that affect general performance. 

VI. RESULTS: MULTIPROGRAMMED 
At a higher level, core-selectability can also be viewed as 

providing selectability between a homogeneous or heteroge-
neous multi-core design. 

As pointed out in the related work section, it has been 
shown that a heterogeneous multiprocessor design can pro-



vide better throughput in a multiprogrammed environment. 
But, it has also been shown that heterogeneity can degrade 
the performance of multithreaded workloads. Therefore, a 
design that can transform between heterogeneity and homo-
geneity will have a degree of robustness in performance that 
is unachievable by other design solutions. In this section we 
investigate the potential performance benefit of such robust-
ness.  

Note that, from a stochastic standpoint, what renders 
multithreaded applications unsuitable for heterogeneity is the 
fact that they cause tasks (i.e., threads) with the same work-
load behavior to arrive at the system in bursts. This is op-
posed to the more normal distribution of task arrival in a 
multiprogrammed environment (see [35] for a more detailed 
study of the importance of accurately accounting for the task 
arrival pattern). 
A. Methodology 

In order to stochastically model a multiprogrammed envi-
ronment, we simulate the queuing and occupation of differ-
ent processing cores for different workload types. Tasks of 
different workload types are generated according to a ran-
dom process with a normal distribution.  

Tasks are primarily placed in the dedicated task queue of 
the core with the most suitable microarchitecture for the 
task’s workload type. If the most suitable core is occupied, 
the task is directed to the next best core. If all cores are in 
use, the task waits for the most suitable core to become 
available. When there are cores with the same architectural 
configuration in the system (homogeneous), tasks are ran-
domly assigned to them based on availability. Once the core 
is free, the task at the head of the task queue is consumed by 
the core for a given amount of time. 

The amount of time it takes each task to be executed by a 
specific core depends on the design of the core and the task 
workload behavior. In this analysis, the workload behavior 
that a task may display is limited to that of the Simpoints 
[41] of the integer SPEC2000 suite of benchmarks. The con-
sidered core designs are the same three derived in Section IV 
(Core-U, Core-A and Core-B), but simulated with sim-mase 
from the Simplescalar V4.0 toolset [36]. 

All tasks are considered to consist of 3.2 billion instruc-
tions no matter what the workload type. The amount of time 
a core is occupied by a task is determined by the rate with 
which the task’s workload type is executed on the microar-
chitectural configuration of that core. As an example, a task 
that executes on a specific core design at a rate of β instruc-
tions per nanosecond is executed on that core in 3.2÷β sec-
onds. 
B. Evaluation Results 

In order to evaluate the potential of core-selectability un-
der different task arrival patterns, we compare the task turn-
around time of systems with different combinations of core 
designs. Figure 9.a displays the average turnaround time of 
tasks submitted to two such quad-core systems. One system 
is homogeneous, and consists of four cores of the Core-U 
design. The other is heterogeneous, and consists of two cores 
of the Core-A design and two cores of the Core-B design. 
Results are presented across the spectrum of the task arrival 

rate, from low-contention to saturation. Tasks of different 
workload types arrive independently of each other. Thus, this 
task arrival pattern can be considered to be more representa-
tive of a multiprogramming environment.  

These results show that the heterogeneous design results 
in around 25% lower task turnaround time in low arrival 
rates compared to the homogeneous design. Moreover, it 
displays roughly 14% higher execution bandwidth (the task 
arrival rate at which task turnaround time increases un-
boundedly). Therefore, employing 2-way core-selectability 
can provide such performance enhancement to multipro-
gramming environments. This is while, contrary to a fixed 
heterogeneous design, core-selectability does not degrade the 
performance of multithreaded applications, as it can switch 
back to a homogeneous design (and even provide higher 
performance than a fixed homogeneous design, as observed 
in the prior section). 

For comparison, Figure 9.b displays the average turn-
around time of tasks submitted to the same two differently 
designed quad-core systems. Here, however, tasks of differ-
ent workload types arrive in bursts of four tasks of the same 
workload type. Thus, this task arrival pattern can be consid-
ered to be more representative of a multithreaded environ-
ment. These results show that under this task arrival pattern 
the heterogeneous design results in 10% higher task turn-
around time in low arrival rates, and lower execution band-
width, compared to the homogenous design. A core-
selectable design enables the system to transform into the 
best quad-core solution for the task arrival pattern at hand. 
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Figure 9.  Average task turnaround time for                                                  
(a) normal traffic, and (b) bursty traffic. 

VII. DISCUSSION 

A. The Limitations of this Study 
The evaluation results presented here are by no means 

conclusive enough to place a solid verdict on the notion of 
core-selectability, as the results may potentially be biased by 
some subtle circuit-level details. Nevertheless, we believe 
that in conjunction with the qualitative merits outlined here, 
a compelling enough argument emerges to warrant further 
investigation of this technique.  

It is also important to note that the results presented here 
do not represent an upper bound on the performance en-
hancement attainable from core-selectability.  For instance, 
the customized core designs we consider display limited di-
versity (for demonstration purposes and limitations in simu-
lation). In actual implementation, not only can the cores dif-



fer in their microarchitectural parameters, but also in funda-
mental functionality and even ISA.  

A chief benefit of core-selectability is the fact that it al-
lows for the instruction-level performance enhancement of 
different types of workload behavior to be separated from 
each other. This is an aspect of core-selectability that we do 
not quantitatively evaluate here, as it pertains to design and 
verification effort, which is challenging to quantify.  

We do not present results for a head-on performance 
comparison of core-selectability with the option of using the 
die area of the added cores for other purposes, e.g., more 
cache. Although such comparison has become commonplace 
in the academic arena, we believe that the assumption that it 
is die area that limits the sizing of structures is out-dated. If 
added cache were to be of performance benefit, it would 
already be provisioned in a well-designed baseline system. If 
it is not, it is because the increase in access latency would 
outweigh the benefit. Note that in the evaluations caches 
equivalent to those of modern processors are employed. 

What does need to be evaluated in future work is the po-
tential of core-selectability in the presence of simultaneous 
multithreading for multithreaded workloads. Although core-
selectability is aimed at enhancing the extraction of ILP, a 
portion of this parallelism may be extractable through fine-
grain threading. 

An intriguing twist, that is not investigated here, is to 
employ core-selectability in conjunction with adaptable 
caches and cores with different clock domains. This can al-
low for much broader diversity in the design of the selectable 
core designs without introducing slack to the cache accesses. 
B. Future Trends 

The value of core-selectability is more evident when tak-
ing into consideration a number of technology trends.  

Core-selectability exploits the increasing trend of transis-
tors available on dies. It also does not exacerbate the trend of 
increasing power consumption and verification effort that 
alternative approaches to performance enhancement entail. 
This is because it enables the separation of the circuitry and 
design complexity necessary for dealing with different types 
of workload behavior, without drastically adding to the inter-
connection complexity. 

Figure 10 shows the decreasing trend in the portion of die 
area consumed by the actual processing core(s) in chip mul-
tiprocessors over the past years. With the continuation of this 
trend, the viability of employing core-selectability will in-
crease. A recent study by Rogers et al. [37] also forecasts a 
shrinking trend in the aggregate die area consumed by the 
cores in chip multiprocessors. 
C. Potential Drawbacks   

There are two main potential drawbacks to the imple-
mentation of core-selectability.  

One is the added cost of engineering multiple core de-
signs.  The effort of designing a single core that has been 
tweaked to attain high performance across a wide range of 
applications may turn out to be less than that of designing 
multiple cores that are customized to specific workload be-
haviour, although not tweaked as much. 

 

 
Figure 10.  Percentage of die area consumed by the processing cores in 

commercial microprocessors over the past years*. 

 
The other potential drawback is the added propagation delay 
at the shared ports to the system. Although with the technol-
ogy library and the detailed baseline architecture employed 
in the evaluations of this study, the extra propagation delay 
was of negligible impact, it is not out of the question that it 
may be problematic in other settings. Whether the perform-
ance gain of core-selectability exceeds the potential loss due 
to increased propagation delay at the shared ports is a ques-
tion that needs to be addressed in the context of the charac-
teristics of the technology and development setup in which it 
is to be implemented.  

VIII. CONCLUSION 
This study investigates a potential solution to increasing 

the utilization of existing provisioning in the cache and inter-
connection resources of a chip multiprocessor. The approach 
is to place a number of differently designed cores (with dif-
ferent ILP-extracting units) within each node, and provide 
the ability to select which core to use depending on the char-
acteristics of the applications at hand. 

With the technology library considered in this study, it is 
shown that employing this technique with two core designs 
that focus on different ILP behavior, can result in better per-
formance across a wide range of parallel applications, com-
pared to a conventional design employing the best core de-
sign for overall performance across the same benchmarks. It 
is also shown that this design solution can provide greater 
throughput under multi-programmed workloads, by enabling 
the system to transform into a heterogeneous design when 
needed, i.e., providing selectability between homogeneity 
and heterogeneity. 
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