
Core-Selectability in Chip Multiprocessors

Hashem H. Najaf-abadi, Niket K. Choudhary, Eric Rotenberg
Electrical and Computer Engineering Department

North Carolina State University
{hhashem, nkchoudh, ericro}@ece.ncsu.edu

Abstract—The centralized structures necessary for the extrac-
tion of instruction-level parallelism (ILP) are consuming pro-
gressively smaller portions of the total die area of chip multi-
processors (CMP). The reason for this is that scaling these
structures does not enhance general performance as much as
scaling the cache and interconnect. However, the fact that
these structures now consume less proportional die area opens
an avenue to enhancing their performance through truly over-
coming the one-size-fits-all approach to their design.
This paper proposes core-selectability – incorporating differ-
ently-designed cores that can be toggled into active employ-
ment. This enables differently customized ILP-extracting
structures to be at hand in the system while not dramatically
adding to the interconnect complexity. The design verification
effort is minimized by separating the complexity of different
core designs. Moreover, contrary to alternative approaches,
the performance and power efficiency of the core designs are
not compromised.
Evaluation results are presented that show that, even when
limiting the diversity between core designs to only the sizing of
microarchitectural structures, core-selectability has the poten-
tial to provide notable performance enhancement (with an
average of 10%) to scalable multithreaded applications, with-
out increased concurrency. In addition, it can provide signifi-
cantly greater throughput to multiprogrammed workloads by
providing the potential for the system to transform into a het-
erogeneous design.

Chip Multiprocessor; Heterogeneity; Microarchitecture

I. INTRODUCTION
In the design of a chip multiprocessor (CMP), if the bal-

ance in resource provisioning is to be maintained, an increase
in the number or performance of processing cores requires an
increase in the cache and interconnection resources. This
does not necessarily mean that all applications utilize the
provisions to the fullest extent, however. By overcoming the
instruction-level bottlenecks of applications that underutilize
the cache and interconnect, it is possible to enhance their
execution performance, and yet maintain the balance in pro-
visioned resources. This will result in better utilization of
provisioned cache and interconnect.

A major factor that inhibits instruction-level performance
enhancement is the one-size-fits-all approach to the design of
the centralized units necessary for extracting instruction-
level parallelism (ILP), e.g., the issue-queue, load/store
queue (LSQ), reorder buffer (ROB). This is a result of the
inherent criticality of these units, which renders them im-
practical for dynamically changeable design solutions (i.e.,
reconfiguration). If it were possible to genuinely adjust the

configuration of these units to suit the application at hand,
notable instruction-level performance could be gained.

Meanwhile, as merely scaling the size of the ILP-
extracting units does not necessarily improve their general
performance, the actual cores in CMPs have been consuming
progressively smaller portions of the physical layout. This
opens an avenue to a different form of instruction-level per-
formance enhancement: replacing each core in the CMP with
a cluster of multiple differently-designed cores, called a
node, with the option to dynamically select which core to
actively employ. The purpose of these different cores is to
provide microarchitectural diversity, rather than concur-
rency. Thus, only one core in each node need be actively
employed at a time. This allows for the cores in a node to
share the complex resources that interconnect nodes together
in the CMP, and maintain the original provisioning of these
resources. We refer to this technique as core-selectability, as
its main benefit comes from the ability to select the microar-
chitectural design to be employed.

This technique can achieve what reconfiguration aspires
to achieve. It is a scalable solution to using the available
transistors to enhance multithreaded performance without
overly increasing design complexity, verification effort or
power consumption. It allows for the microarchitecture de-
sign effort to be partitioned and focused on specific types of
workload behavior, rather than attempting to pack everything
into one complex design solution. Moreover, it provides the
potential for the system to transform into a heterogeneous
design (and even different forms of heterogeneity), enabling
greater throughput to multiprogrammed workloads [30] and
better performance to critical-section intensive multithreaded
workloads [29].

In this study we investigate the implications and benefits
of implementing core-selectability in a general-purpose chip
multiprocessor. In the experimental evaluation, the consid-
ered core designs are based on propagation delays observed
for different microarchitectural structures attained from a
detailed synthesizable HDL model of a superscalar processor
in 45nm technology.

The following section provides background and an over-
view of related work. The implementation of core-
selectability is described in Section III. Our evaluation meth-
odology and choice of core designs are outlined in Section
IV. Section V presents evaluation results that illustrate the
performance benefit of core-selectability under a wide range
of multithreaded benchmarks when the cores have the same
clock period. In Section VI, we present results showing how
core-selectability can improve task turnaround time and exe-
cution throughput under multiprogrammed workloads. Fur-

To appear in the Eighteenth International Conference on
Parallel Architectures and Compilation Techniques (PACT)

ther discussion is presented in Section VII, and Section VIII
concludes this study.

II. BACKGROUND
A. Customized Design of Processing Cores

Prior work has shown that there is significant perform-
ance benefit in employing customized core designs for dif-
ferent workload behavior [11] [30]. Nevertheless, when lim-
ited to a single core design, the best solution is one that pro-
vides reasonable performance across a wide range of work-
load behavior. Thus, the different units of a general-purpose
processing core need to be designed in anticipation of typical
workload behavior. Such a system will perform suboptimally
when the actual workload being executed on the system dis-
plays atypical behavior – with undersized structures degrad-
ing IPC and oversized structures wasting propagation delay.
And yet, in a general purpose system, all workload behavior
can be atypical.

The characteristics of the employed technology can also
impact the best tradeoffs in the design of a processing core.
For instance, extracting greater parallelism requires more
complex logic (and longer propagation delays), which either
results in deeper pipelining or an increased clock period.
While increasing the clock period can directly degrade per-
formance, deeper pipelining can impact the cycle delay be-
tween the wakeup of dependent instructions, adversely im-
pacting parallelism.

Moreover, intricate circuit-level details can dramatically
sway the best design tradeoffs for a given workload behav-
ior. For instance, the unified clock period intertwines the
different microarchitectural design units. Thus, in a high-
performance design, the scaling of any unit must either result
in change in the pipeline depth of that unit or it must be ac-
companied by proportional scaling in the propagation delay
of all other units (to enable frequency scaling). To make
things even more complicated, different units of the design
tend to scale differently and are not ideally pipelinable. This
can result in pipeline slack, which increases effective propa-
gation delay, and degrades performance.

The ability to employ different core designs opens the
door to a much broader overall system design space, and the
potential for considerable performance gain. One aspect of
this design space is the manner in which the workload space
should be split up between the cores, for each to be custom-
ized to [31]. Another aspect is the customization of core de-
signs to their constituent workload behavior. Correctly ex-
ploring this design space requires core customization in
which intricate circuit-level details are accurately accounted
for. In this design space, abstracting away the circuit-level
details can lead to inaccurate assessments and the adoption
of severely suboptimal design solutions.
B. A Circuit Level Model

In order to be able to account for circuit-level details, and
conduct accurate core customization, we have developed a
fully-synthesizable Verilog model of a contemporary pipe-
lined out-of-order superscalar processor [24]. This model has
parameterized microarchitectural features, and is aimed at
high-fidelity design space exploration. It enables evaluation

of the effect of the propagation delay and pipeline depth of
different microachitectural units on overall performance un-
der any technology characteristics. The results presented in
this study are based on results attained from the synthesis of
different configurations in 45nm technology.

As an example, Figure 1 shows the propagation delay of
the select logic, extracted from the model, when the issue-
queue size and issue width are scaled. These results show
that, for a specific propagation delay, there is a tradeoff be-
tween the size of the issue queue and the issue width. The
best tradeoff depends on the workload behavior.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9
Issue Rate (Width)

D
el

ay
 (n

s)

Issue Queue Size=32
Issue Queue Size=64
Issue Queue Size=128

Figure 1. Propagation delay of the selection logic in 45nm technology,

when the issue width and issue-queue size vary.

C. The Overhead of Reconfigurability
One approach to enabling different workloads to be exe-

cuted on suitable core designs is through reconfigurability. In
implementing reconfigurability, there is a tradeoff between
the flexibility of the design and the overhead introduced to
the system. Adaptable architectures [2] have less overhead,
but provide less flexibility in the design. In contrast, FPGA-
based reconfigurability [1] provides high flexibility at the
cost of large overheads. Nevertheless, in critical microarchi-
tectural units the overhead of even the most inflexible forms
of reconfigurability can outweigh the would-be benefit.

Although prior studies have proposed adaptable imple-
mentations of various microarchitectural units, their focus
tends to be on reducing power consumption when needed,
with minimal performance degradation. Achieving perform-
ance enhancement through adaptability, however, is more
challenging.
1) Reconfigurability in the logic

An example of the difficulty in implementing recon-
figurability can be observed in the superscalar wakeup logic.
The main component of propagation delay in the wakeup
logic is the load on the rails that broadcast newly issued in-
struction tags to the comparators that compare them with
those of waiting instructions.

Downsizing the effective issue-queue size can, in theory,
be achieved by switching off the load of the unwanted com-
parators. In practice, however, switching off the capacitance
can only be achieved through buffering a portion of the
broadcasting rail, as shown in Figure 2. Such buffering will
provide the effect of a repeater when the issue-queue is not
downsized [2]. But, since the buffer will need to be large
enough to drive the rest of the broadcasting rail, it will per-
manently place a large extra load on the rail, increasing the
propagation delay of the downsized portion.

Figure 2. Reconfiguration in the issue-queue size.

Using the optimal repeater placement of SoC Encounter,
it was found that in 45nm technology the best design for a
128-entry issue-queue consists of 4 large buffers, each with
9fF input capacitance, driving all the issue-queue compara-
tors in a tree structured layout. Implementing the ability to
downsize the issue-queue within this circuitry results in a
notably larger propagation delay compared to custom down-
sized issue-queue designs.

Table 1 shows the propagation delay of the wakeup and
select logic in a 4-wide issue-queue with a maximum size of
128 entries that can dynamically be downsized. Also shown
in this table is the propagation delay for custom downsized
issue-queue designs. These results show that, the reconfigur-
able design, at its full size (of 128 entries) is 15% slower
than a same-sized custom design. For smaller issue-queue
sizes, the reconfigurable design becomes even slower rela-
tive to same-sized custom designs – with 46% longer propa-
gation delay for the 16-entry size. Therefore, although there
may be some benefit in this form of reconfigurability, it is far
from the true benefit of customization.

TABLE I. EFFECT OF ISSUE-QUEUE SIZE ON PROPAGATION DELAY
WITH AND WITHOUT RECONFIGURABILITY

Issue-Q
size

Wakeup
Delay (ns)

Select Delay
(ns)

Wake & Select
Delay (ns)

Reconfig.
Delay (ns)

16 0.55 0.54 1.09 1.55
32 0.635 0.59 1.38 1.89
64 0.67 0.65 1.62 2.1
128 0.82 0.76 2 2.3

Implementing reconfigurability in the issue width is even
more challenging. The dependent instruction tags of waiting
instructions are connected to as many comparators as there is
issue width. The extra load of the unnecessary comparators
in the downsized setting can not be dynamically removed
from the circuit without inserting extra buffering. This buff-
ering introduces extra load in the system, which degrades
performance.

Nevertheless, the direct overhead in propagation delay is
not the only factor inhibiting performance gain from such
reconfigurability.
2) Reconfigurability in the pipeline structure

Even if certain microarchitectural units were to be made
optimally adaptable at the logic-level, the most difficult fac-
tor in attaining performance benefit from such reconfigura-
bility is in connection with the tight pipelining of high-
performance processor designs.

In fact, selectability, as a general concept, can be em-
ployed to create reconfigurability in any microarchitctural
unit (providing the ability to select from among different
implementations of a unit). Moreover, adaptable caches [32]
have been shown to be implementable with fairly low over-
head. However, it is challenging to draw on such confined
reconfigurability without causing slack and imbalance in the
pipeline structure, as different design units scale differently
and some do not scale at all.

For instance, the operation of the functional units is de-
termined by the ISA and is unaffected by the microarchitec-
tural configuration. Moreover, the functional units reside
within the feedback loop of any microarchitecture, and any
slack in the pipeline stages of the functional units will impact
the raw performance of the system. Such portions of a proc-
essor design need to be pipelined with slack in low clock
frequency configurations for correct functionality in high
frequency configurations.

Dynamic pipeline scaling (DPS) provides the potential
for variable depth pipelining of a microarchitectural unit
[21]. This can theoretically enable the independent scaling of
different design units, while preventing slack in any pipeline
stage. In practice, however, DPS introduces overhead in the
form of extra latch propagation delay and power consump-
tion. More importantly, it is only practical for multiplying or
dividing the clock frequency, which dramatically limits the
viable design space.
3) The verifiability of reconfigurability

Design verification needs to be accounted for in high
level design choices as it has become the major consumer of
man-hours in the development of modern processors [33]. It
has been shown that design symmetry reduces verification
cost by mitigating the effective number of functional states
that need to be accounted for [5].

Reconfigurability, however, desymmetritizes the design
of a processing core by creating differences between portions
of the microarchitecture that would otherwise be identical.
For instance, in the implementation of an adaptable issue-
queue, the entries that are disabled in the down-sized mode
differ from those that are not disabled. In addition, the logic
that implements reconfigurability itself is inherently not
symmetric. This can lead to an explosion in the number of
states, and a potentially exponential increase in verification
effort.

Verifiability is not only an issue of concern in recon-
figurable designs. Any design solution that attempts to push
the limit on overall performance will inevitably be more
complex and less symmetric, requiring greater design verifi-
cation effort. Core-selectability allows for the design com-
plexity of each design solution to be limited, by focusing on
only the constituent workload behavior.
D. Increasing Concurrency

Question: What is preventing manufacturers from em-
ploying a larger number of processing cores in their chip
multiprocessor designs than they currently are?

Merely replicating the cores themselves consumes no ex-
tra design or verification effort. Moreover, each additional
core consumes incremental die area. The issue is not chip

=

= = v

= v

= = v

= = v

Reconf. Select

Select
Logic

other operands

other operands

other operands

other operands

9fF

Instruction Tags

yield either – with companies such as IBM already employ-
ing multi-die-in-package design solutions (or Multi-Chip
Module technology) [22]. Therefore, the main reason must
lie in the complexity and design effort added cores introduce
to the interconnection network and cache hierarchy, in addi-
tion to a limited power budget.

As illustrated in Figure 3, in conventional chip multi-
processor design, increasing the number of cores in the sys-
tem necessitates more interconnect bandwidth and cache
capacity. This increases not only core-to-core latency, power
consumption and manufacturing cost, but also design and
verification cost. In general, the major problem with on-chip
networks is that they simply do not scale very well.

Nevertheless, the issue of concern here is not cost per se
(as it is natural for greater performance to entail higher cost),
but rather wastefulness. It is wasteful to dedicate further re-
sources to any portion of the design before it has been fully
utilized. However, a large portion of workloads tend to un-
derutilize the cache and interconnect. The fundamental rea-
son for this is that workloads that place high demand on
these resources are more dominant in influencing what en-
tails a well provisioned design – as insufficient provisioning
dramatically degrades their performance (and consequently
overall performance).

Figure 3. Complexity of the interconnection in a conventional design.

Adding cores to a system without increasing the provi-
sioned interconnection resources can alternatively be
achieved by splitting the existing resources between the
cores (i.e. splitting the channel bit-width in crossbar-based
interconnect, and the bisection-width in tile-based). How-
ever, if doing so yields better overall performance it indicates
that the interconnect was originally over-provisioned any-
way. Moreover, the overhead of this form of increasing con-
currency permanently impacts the system – such that appli-
cations that are inherently less scalable permanently observe
performance degradation.

All in all, we believe that an objective should be to en-
hance the instruction-level performance of workloads that
underutilize the existing provisions in cache and interconnec-
tion resources, before provisioning more of such resources.
E. Related Work
The Conjoined-core [7] approach to Chip Multiprocessor
design has been proposed as a solution to efficiently increase
concurrency. The approach is a tradeoff between simultane-
ous multithreading [8] and single-chip multiprocessing [9].
Multiple homogeneous cores are added to the processing
nodes of a CMP, and the cores time-share resources such as
the floating-point unit, instruction cache, data cache and
crossbar ports. In this manner, concurrency can be increased
with fewer resources. The CASH architecture [10] is a simi-

lar approach. L1 cache port sharing has also been employed
in Sun’s recent Rock processor [28].

In the implementation of core-selectability, resources are
also shared between cores. However, the objective is to en-
hance performance through dynamic core customization,
rather than concurrency. In fact, while the sharing of re-
sources is part of the objective in the conjoined-core and
CASH techniques (and Rock architecture), it is more of an
imposition in core-selectability.

Core-fusion [4] and Composable Lightweight Processors
[3] are similar techniques to enable reconfiguration of the
cores in a chip multiprocessor by combining smaller cores to
form larger ones. This enables the cores to vary and become
more suitable for the application at hand. However, these
techniques are not aimed at providing performance benefit to
scalable multithreaded applications, as maximizing the num-
ber of available cores provides the best overall performance.
More importantly, the reconfiguration overhead of imple-
menting both techniques manifests itself in the microarchi-
tectural units that are most critical to ILP extraction, i.e., the
issue-queue, ROB and LSQ. Salverda and Zilles show that
there are fundamental obstacles to achieving good perform-
ance through core-fusion with in-order cores [23].

Previous studies have demonstrated the performance and
power benefit of heterogeneity over homogeneity in CMPs
designed for multi-programming environments [11] [12] [13]
[30]. Heterogeneity entails the employment of differently
designed cores for the execution of tasks with different
workload behavior. However, it has also been shown that
heterogeneity can degrade the performance predictability and
scalability of multi-threaded applications [14].

In panel talks, Patt [27] has suggested the abstract notion
of employing large specialized units that can be powered
down when not needed (the “Refrigerator” analogy), as a
power-efficient approach to putting the growing availability
of transistors to use. However, to the best of our knowledge,
no prior work has looked at the option of employing com-
plete processing cores that are differently designed with the
intent to employ only one at a time.

Integral to our evaluation methodology is the circuit-level
modeling of the propagation delay of different microarchi-
tectural units in the design of processing cores. The Illinois
Verilog Model [16] is functionally the closest to our design,
although it is not fully synthesizable. Other freely available
HDL processor models [17] [18] do not represent the com-
plexity of an out-of-order superscalar microarchitecture.

III. IMPLEMENTATION OF CORE-SELECTABILITY
The strength of core-selectability lies in its simplicity and

the absence of microarchitectural invasiveness. Basically, the
design adjustments needed for implementing core-
selectability are only in the back-end and front-end of the
core designs. This is essential to minimizing design and veri-
fication effort. Moreover, the main mechanism required to
implement core-selectability (i.e., port sharing) has been
proposed and employed elsewhere. Thus, the novelty of
core-selectability lies in the purpose for which such mecha-
nisms are employed, rather than the mechanisms themselves.

Memory subsystem

core 1

Interconnect

L1 cache

core 2

L1 cache

core 3

L1 cache

core n

L1 cache

L2 cache bank 1 L2 cache bank 2 L2 cache bank m

In the front-end, the cores can share a port to the instruc-
tion cache. However, it is important that each core possess a
dedicated fetch engine, as this unit is closely tied to the func-
tional units that determine branch outcomes. In the back-end,
the data-paths of differently designed cores need to share a
port to the data cache. Only the core that is selected for ac-
tive employment will have access to these ports.

The cores can be made selectable at the L1 cache level or
the port to the shared L2 cache. Implementing selectability at
the L1 level has the advantage of better utilization of die
area. Selectability at the L2 level has the advantage of ena-
bling L1 cache customization, and places no overhead on the
more critical L1 cache accesses. In this study we focus on
implementing core-selectability at the L1 level. The design
of the Rock processor [28] ensures that, at the very least,
port-sharing is physically implementable at this level.

Figure 4 illustrates the basic schematic of a two-way
core-selectable design. Within each node, the active core
takes over the port to the L1 data cache. Note that this figure
only shows the multiplexing of the address signals to the L1
cache, not how the data paths are directed to both cores.

Figure 4. Complexity of the interconnection in a core-selectable design.

Another option in the implementation of core-
selectability is whether or not to allow the different cores to
have different clock frequencies. Customizing the clock fre-
quency allows for the pipeline depth of the core designs to be
customized to the characteristics of the workload, and can
considerably increase the viable design space of the process-
ing cores. When cores with different clock domains are em-
ployed, preventing pipeline slack requires either adaptable
caches at the L1 level, or asynchronous buffering – which
results in a form of Globally-Asynchronous Locally-
Synchronous (GALS) design [34].
A. The Propagation Overhead of Core-Selectability

As shown in Figure 5, the multiplexing of access to the
caches does introduce extra logic to the system. In addition,
the cores may end up being more physically distant from the
shared port to the L1 cache than a dedicated core would have
been.

Using SPICE analysis with the 45nm FreePDK library
[19], a wire with a length in the range of 1mm (the diameter
of a typical core) in the L3 metal layer is estimated to have a
capacitance no larger than 100fF. In this technology, a mul-
tiplexer designed with pass-transistor logic and optimized for
up to 100fF input capacitance, was found to display 26 pico-
seconds propagation delay. Therefore, port sharing should
result in added propagation delay no larger than 26 picosec-
onds. This small propagation overhead is made possible by

the fact that the sizing of the gate need only be optimized for
minimal propagation delay, rather than minimal switching
delay. Nevertheless, the main issue is not the small propaga-
tion overhead, but the fact that the changeability is not im-
plemented within tightly-coupled microarchitectural pipeline
stages.

Figure 5. The extra switching and wire propagation delay of port-sharing.

B. Transferring Execution
All user-level and system-level instructions execute on

the currently active core within a node. When the operating
system scheduler chooses to schedule a task on a core that is
different from the currently active core, it first finishes up
what it is doing on the currently active core and then exe-
cutes a final instruction on the currently active core, that si-
multaneously configures the currently active core to be inac-
tive and asserts an external interrupt signal of the core to be
activated. This implies that (1) a core can assert the activa-
tion interrupt signal of any other core and (2) a core’s exter-
nal interrupt unit is always active whether or not the core is
active. When an inactive core receives an activation inter-
rupt, it vectors its program counter to an interrupt handler
that starts the task.

IV. METHODOLOGY

A. Customizing the Core Design
The goal of core customization is to find a global design

optimum that captures the interplay between workload char-
acteristics, the microarchitecture, and the physical implemen-
tation. Thus, propagation delays of microarchitectural units
are fundamental to this exercise. To this end, we developed a
synthesizable Verilog model of an out-of-order superscalar
processor. Details of this model are available in a prelimi-
nary report [24]. Major components or features are either
parametrically configurable (e.g., structure sizes) or different
configurations for them have been explicitly designed (e.g.,
number of superscalar ways in each pipeline stage). Different
designs were synthesized with Synopsis Design Compiler
V2005.09-SP3 and placed-and-routed with Cadence SoC
Encounter V7.1, using the FreePDK OpenAccess 45nm
Standard Cell Library [19].

Since a superscalar processor makes use of many special-
ized and highly-ported RAMs (e.g., rename map table, archi-
tectural map table, shadow map tables, free-list, active-list,
physical register file, etc.), we also developed a register file
compiler. It uses custom layouts of multi-ported bit-cells and
peripheral circuits to generate RAMs and characterize their
access times (SPICE model extraction).
B. Multicore Simulation Setup

We explore the core design space and evaluate the effect
of core-selectability with full-system simulation using the

Memory subsystem

core a

Interconnect

L1 cache L1 cache L1 cache L1 cache

L2 cache bank 1 L2 cache bank 2 L2 cache bank m

core b
core a

core b
core a

core b core selection signal

core node 1 core node 2 core node n

L1 Data Cache

core-selection

Core A Core B

extra switching
extra wire (100fF)

Virtutech’s Simics simulator [25] extended with the Wiscon-
sin GEMS and OPAL [26] simulators. The GEMS simulator
provides a detailed memory system timing model, and the
OPAL simulator provides a detailed microarchitectural tim-
ing model of a processor with the Sparc ISA. The cache and
interconnection characteristics considered in all studies are
shown in Table II.

TABLE II. CACHE AND INTERCONNECTION CHARACTERISTICS
NETWORK TOPOLOGY HIERARCHICAL SWITCH
COHERENCE PROTOCOL MOESI
DATA BLOCK BYTES 64
L1 CACHE ASSOC 2
L1 CACHE NUM SETS BITS 9
L2 CACHE ASSOC 4
L2 CACHE NUM SETS BITS 12

A diverse set of multithreaded benchmarks from the

Splash-2, Java-grande and SpecJbb benchmark suites, and
the Blast biometric benchmark, are accounted for. The
benchmarks and the employed input parameters are listed in
Table III. The benchmarks were compiled using the PAR-
MACS [40] library from UPC.

TABLE III. BENCHMARKS WITH INPUT PARAMETERS
Suite Benchmark + input parameters

 barnes 8192 123 0.025 0.05 1.0 2.0 5.0 0.075 0.25 4
 cholesky -p4 -B128 -C16384 < tk29.o
 fft -m22 -p4 -n65536 -l4
 fmm two cluster plummer 8192 1e-6 4 5 .025 0.0 cost zones
 lu -p4 -n2048 -b64

Splash2 ocean –n258 -p4 -e1e-07 -r20000 -t28800
 radiosity -p 4 -room –batch
 radix -p4 -n2621440 -r2048 -m524288
 raytrace -a8 -p4 teapot.env
 volrend 4 head
 water_spatial < input.p4
 java -cp .:/RayTracer/jg JGFRayTracerBenchSizeA 4

Java-Grande java -cp .:/MoldDyn/jg JGFMolDynBenchSizeA 4
 java -cp .:/MonteCarlo/jg JGFMonteCarloBenchSizeA 4

Specjbb java -classpath -propfile specjbb.props
Blast blastall -p blastn -d ecoli_nt -a 4 < alu.n

C. The Core Designs
A major factor in the evaluation of core-selectability is

the design of the cores employed in the system. The different
microarchitectural parameters were explored under the con-
straint that the propagation delays of different units remain
within a certain number of clock cycles. The performance of
each design solution was evaluated for the benchmarks de-
tailed in Table III.

The benchmarks were executed on the multithreaded
simulation setup detailed in the previous subsection for 10
million instructions. This was preceded by skipping the ini-
tialization phase of each benchmark to arrive at the main
execution loop, and warming up the caches for 10 million
instructions.

The microarchitectural attributes of the best core design
found for average execution time across all the benchmarks
are listed under the label Core-U in Table IV. Two other core
designs were also extracted that, compared to Core-U, pro-
vide notably higher performance on different subsets of the
benchmarks. The microarchitectural attributes of each of
these two core designs, which we will refer to as Core-A and
Core-B, are also listed in Table IV. Each core design attains
higher performance on a subset of benchmarks at the cost of
lower overall performance across all benchmarks. In choos-

ing these core designs, care was also taken to limit the design
space to a fixed clock period, equal to that of Core-U (0.6
nanoseconds). This was necessary to preserve lucidity in the
difference between the designs, and prevent the need for
asynchronous buffering or adaptable caches.

TABLE IV. CONFIGURATION OF CORES

 Core-U Core-A Core-B
FETCH STAGES 4 3 5
DECODE STAGES 1 1 1
RETIRE STAGES 2 2 2
ISSUE WIDTH 3 2 5
ROB SIZE 512 1024 512
IWINDOW SIZE 64 128 32
Clock period .6ns .6ns .6ns

Core-A provides higher performance to applications that

have hard-to-access ILP. It has a large issue-queue and yet
has limited issue width. This allows for the propagation de-
lay of the wakeup-select logic to be focused on looking fur-
ther ahead in the dynamic instruction stream to find the lim-
ited ILP. Core-B, on the other hand, provides higher per-
formance to applications that have easier accessible local
ILP. It has a smaller issue-queue, yet it has wider issue
width. This allows for the propagation delay of the wakeup-
select logic to be focused on issuing more instructions per
cycle. Figure 6 shows the average execution time of Core-A
and Core-B across all the benchmarks, normalized to that of
Core-U.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Core-U
Core-A
Core-B

Figure 6. Average execution time across all benchmarks for different core

designs normalized to that of Core-U.

Note that Core-A and Core-B are not truly the best core
designs for core-selectability. However, they do present a
scenario in which the source of performance difference be-
tween the cores is more lucidly discernable. Moreover, the
manner in which the different benchmarks display preference
towards being executed on these cores provides a convenient
scenario to explain a few factors that need to be considered
in the incorporated core designs.

V. RESULTS: MULTITHREADED
Figure 7 shows the execution time of individual bench-

marks on Core-A and Core-B normalized to the execution
time on Core-U. These results show that while Core-U dis-
plays the best overall performance across all benchmarks, it
can display considerably suboptimal performance under in-
dividual benchmarks. The results also show that for all the
benchmarks, other than RayTracer, either Core-A or Core-B
performs better than Core-U. In addition, for all benchmarks,
other than the biometric benchmark (Blast), either Core-A or
Core-B performs worse than Core-U.

Core-selectability allows for the user to dynamically pick
and choose the employed core design. Thus, a two-way core-
selectable design that employs Core-A and Core-B, will be

able to perform better than Core-U across almost all bench-
marks. However, for the benchmark RayTracer, this solution
will perform 20% worse than Core-U alone. This highlights
the importance of good design space exploration for the em-
ployed cores. Ideally, the core designs should provide higher
performance than the best single design to collectively ex-
haustive subsets of the workload space. In addition, the more
mutually exclusive the subsets are, the more potential there
will be for performance gain.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

barn
es

Blas
t

ch
ole

sk
y fft

fm
m

Ray
Trac

er lu

MolD
yn

Mon
teC

arl
o

oce
an

ra
dio

sit
y

rad
ix

ra
ytr

ace

sp
ec

jbb

vo
lre

nd
wate

r

Core-U
Core-A
Core-B

Figure 7. Execution time of each benchmark on each core design

normalized to the execution time on Core-U.

The benchmarks for which Core-A and Core-B provide
higher performance than Core-U are almost mutually exclu-
sive and almost collectively exhaustive. Nevertheless, it may
be of importance that absolutely none of the benchmarks
display lower performance than the baseline design (even if
average performance is improved). If that is the case, the
core design space needs to be explored more rigorously. One
option is to increase the number of selectable cores, and em-
ploy one that is customized for RayTracer. A more straight-
forward solution is to employ Core-U as one of the selectable
core designs.

Figure 8 shows the average execution time for three com-
binations of two-way core-selectable designs normalized to
the execution time of the baseline design, Core-U. These
results show that the best overall performance for two-way
core-selectability is attained with Core-A and Core-B, show-
ing an average performance enhancement greater than 10%.
Core-selectability between Core-U and Core-B, will not dis-
play performance lower than the baseline design on any
benchmark. But it attains a smaller overall performance en-
hancement, of close to 7%, compared to Core-U alone.

0.8

0.85

0.9

0.95

1

Core-U
Sel. Core-A/Core-B
Sel. Core-U/Core-A
Sel. Core-U/Core-B
Sel. Core-U/Core-A/Core-B

Figure 8. Execution time of core-selectability with different combinations

of cores, normalized to that of Core-U.

Another option is core-selectability between all three
core designs (Core-A, Core-B and Core-U). The average
decrease in execution time for this scenario (also shown in
Figure 8) is over 11%, while not displaying performance less
than the baseline design under any of the benchmarks. How-

ever, increasing the number of selectable cores will increase
the overhead in propagation delay.
A. The Overhead of Selectability

As discussed in the implementation section, core-
selectability can introduce minor overheads to the front-end
and back-end of the core designs.

Accounting for the multiplexing of address signals to the
L1 data cache and the extra wire load, the propagation delay
in the back-end was found to not be increased by more than
26ps. This delay is conveniently less than the slack observed
in the L1 cache access time for all core designs. Although
this can not be generalized to an arbitrary design, cache ac-
cess time does vary in steps (with the associativity or number
of sets) and the optimal core clock period is dependent on
many microarchitectural parameters.

We do not repeat such an evaluation here, as the effect of
increased propagation delay in the front-end has been studied
elsewhere, and the core designs considered here are not the
very best for core-selectability anyway.
B. The Source of Performance

We investigated the source of performance enhancement
by looking at the code of the benchmark that displays the
largest performance gain from a customized core design,
Moldyn (from Java-Grande). This benchmark simulates mo-
lecular dynamics. The main program loop of the application
performs force calculations between only particles that are
within a certain distance of one another. There is little local
ILP within each iteration of the main loop of the application.
But with a high enough window it is possible to reach future
iterations [38], which are mostly independent. It is for this
reason that the application gains such large performance
through increasing the issue-queue size at the cost of nar-
rower issue width.

One may argue that this form of distant parallelism may
be better extractable with simultaneous threads [8]. But we
argue that the performance gain of core-selectability is or-
thogonal to that of simultaneous multithreading. This is be-
cause, even with simultaneous multithreading (SMT), upsiz-
ing the issue-queue will yield better performance with such a
benchmark (compared to the best design across all bench-
marks), as it will enable the extraction of parallelism within
individual threads. Of course, this is assuming that the scal-
ability of the application is not such that SMT just happens
to finish off all remaining parallelism. However, due to the
lack of simultaneous multithreading in the OPAL simulator,
we were unable to quantitatively verify this.

Although there is thread-level parallelism in this applica-
tion, it has been shown that it is difficult to extract without
speculation support [38]. Core-selectability enables extrac-
tion of this parallelism without burdening the design compo-
nents that affect general performance.

VI. RESULTS: MULTIPROGRAMMED
At a higher level, core-selectability can also be viewed as

providing selectability between a homogeneous or heteroge-
neous multi-core design.

As pointed out in the related work section, it has been
shown that a heterogeneous multiprocessor design can pro-

vide better throughput in a multiprogrammed environment.
But, it has also been shown that heterogeneity can degrade
the performance of multithreaded workloads. Therefore, a
design that can transform between heterogeneity and homo-
geneity will have a degree of robustness in performance that
is unachievable by other design solutions. In this section we
investigate the potential performance benefit of such robust-
ness.

Note that, from a stochastic standpoint, what renders
multithreaded applications unsuitable for heterogeneity is the
fact that they cause tasks (i.e., threads) with the same work-
load behavior to arrive at the system in bursts. This is op-
posed to the more normal distribution of task arrival in a
multiprogrammed environment (see [35] for a more detailed
study of the importance of accurately accounting for the task
arrival pattern).
A. Methodology

In order to stochastically model a multiprogrammed envi-
ronment, we simulate the queuing and occupation of differ-
ent processing cores for different workload types. Tasks of
different workload types are generated according to a ran-
dom process with a normal distribution.

Tasks are primarily placed in the dedicated task queue of
the core with the most suitable microarchitecture for the
task’s workload type. If the most suitable core is occupied,
the task is directed to the next best core. If all cores are in
use, the task waits for the most suitable core to become
available. When there are cores with the same architectural
configuration in the system (homogeneous), tasks are ran-
domly assigned to them based on availability. Once the core
is free, the task at the head of the task queue is consumed by
the core for a given amount of time.

The amount of time it takes each task to be executed by a
specific core depends on the design of the core and the task
workload behavior. In this analysis, the workload behavior
that a task may display is limited to that of the Simpoints
[41] of the integer SPEC2000 suite of benchmarks. The con-
sidered core designs are the same three derived in Section IV
(Core-U, Core-A and Core-B), but simulated with sim-mase
from the Simplescalar V4.0 toolset [36].

All tasks are considered to consist of 3.2 billion instruc-
tions no matter what the workload type. The amount of time
a core is occupied by a task is determined by the rate with
which the task’s workload type is executed on the microar-
chitectural configuration of that core. As an example, a task
that executes on a specific core design at a rate of β instruc-
tions per nanosecond is executed on that core in 3.2÷β sec-
onds.
B. Evaluation Results

In order to evaluate the potential of core-selectability un-
der different task arrival patterns, we compare the task turn-
around time of systems with different combinations of core
designs. Figure 9.a displays the average turnaround time of
tasks submitted to two such quad-core systems. One system
is homogeneous, and consists of four cores of the Core-U
design. The other is heterogeneous, and consists of two cores
of the Core-A design and two cores of the Core-B design.
Results are presented across the spectrum of the task arrival

rate, from low-contention to saturation. Tasks of different
workload types arrive independently of each other. Thus, this
task arrival pattern can be considered to be more representa-
tive of a multiprogramming environment.

These results show that the heterogeneous design results
in around 25% lower task turnaround time in low arrival
rates compared to the homogeneous design. Moreover, it
displays roughly 14% higher execution bandwidth (the task
arrival rate at which task turnaround time increases un-
boundedly). Therefore, employing 2-way core-selectability
can provide such performance enhancement to multipro-
gramming environments. This is while, contrary to a fixed
heterogeneous design, core-selectability does not degrade the
performance of multithreaded applications, as it can switch
back to a homogeneous design (and even provide higher
performance than a fixed homogeneous design, as observed
in the prior section).

For comparison, Figure 9.b displays the average turn-
around time of tasks submitted to the same two differently
designed quad-core systems. Here, however, tasks of differ-
ent workload types arrive in bursts of four tasks of the same
workload type. Thus, this task arrival pattern can be consid-
ered to be more representative of a multithreaded environ-
ment. These results show that under this task arrival pattern
the heterogeneous design results in 10% higher task turn-
around time in low arrival rates, and lower execution band-
width, compared to the homogenous design. A core-
selectable design enables the system to transform into the
best quad-core solution for the task arrival pattern at hand.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0.011
0.286

0.561
0.836

1.111
1.386

1.661
1.936

2.211

Average task arrival rate (Hz)

A
ve

ra
ge

 tu
rn

ar
ou

nd
 ti

m
e

(S
ec

.)

Quad core (all Core-U)
Quad core (tw o Core-A, 2 Core-B)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0.0
11

0.2
31

0.4
51

0.6
71

0.8
91

1.1
11

1.3
31

1.5
51

Average task arrival rate (Hz)

A
ve

ra
ge

 tu
rn

ar
ou

nd
 ti

m
e

(S
ec

.)

Quad core (all Core-U)
Quad core (2 Core-A, 2 Core-B)

 (a) (b)

Figure 9. Average task turnaround time for
(a) normal traffic, and (b) bursty traffic.

VII. DISCUSSION

A. The Limitations of this Study
The evaluation results presented here are by no means

conclusive enough to place a solid verdict on the notion of
core-selectability, as the results may potentially be biased by
some subtle circuit-level details. Nevertheless, we believe
that in conjunction with the qualitative merits outlined here,
a compelling enough argument emerges to warrant further
investigation of this technique.

It is also important to note that the results presented here
do not represent an upper bound on the performance en-
hancement attainable from core-selectability. For instance,
the customized core designs we consider display limited di-
versity (for demonstration purposes and limitations in simu-
lation). In actual implementation, not only can the cores dif-

fer in their microarchitectural parameters, but also in funda-
mental functionality and even ISA.

A chief benefit of core-selectability is the fact that it al-
lows for the instruction-level performance enhancement of
different types of workload behavior to be separated from
each other. This is an aspect of core-selectability that we do
not quantitatively evaluate here, as it pertains to design and
verification effort, which is challenging to quantify.

We do not present results for a head-on performance
comparison of core-selectability with the option of using the
die area of the added cores for other purposes, e.g., more
cache. Although such comparison has become commonplace
in the academic arena, we believe that the assumption that it
is die area that limits the sizing of structures is out-dated. If
added cache were to be of performance benefit, it would
already be provisioned in a well-designed baseline system. If
it is not, it is because the increase in access latency would
outweigh the benefit. Note that in the evaluations caches
equivalent to those of modern processors are employed.

What does need to be evaluated in future work is the po-
tential of core-selectability in the presence of simultaneous
multithreading for multithreaded workloads. Although core-
selectability is aimed at enhancing the extraction of ILP, a
portion of this parallelism may be extractable through fine-
grain threading.

An intriguing twist, that is not investigated here, is to
employ core-selectability in conjunction with adaptable
caches and cores with different clock domains. This can al-
low for much broader diversity in the design of the selectable
core designs without introducing slack to the cache accesses.
B. Future Trends

The value of core-selectability is more evident when tak-
ing into consideration a number of technology trends.

Core-selectability exploits the increasing trend of transis-
tors available on dies. It also does not exacerbate the trend of
increasing power consumption and verification effort that
alternative approaches to performance enhancement entail.
This is because it enables the separation of the circuitry and
design complexity necessary for dealing with different types
of workload behavior, without drastically adding to the inter-
connection complexity.

Figure 10 shows the decreasing trend in the portion of die
area consumed by the actual processing core(s) in chip mul-
tiprocessors over the past years. With the continuation of this
trend, the viability of employing core-selectability will in-
crease. A recent study by Rogers et al. [37] also forecasts a
shrinking trend in the aggregate die area consumed by the
cores in chip multiprocessors.
C. Potential Drawbacks

There are two main potential drawbacks to the imple-
mentation of core-selectability.

One is the added cost of engineering multiple core de-
signs. The effort of designing a single core that has been
tweaked to attain high performance across a wide range of
applications may turn out to be less than that of designing
multiple cores that are customized to specific workload be-
haviour, although not tweaked as much.

Figure 10. Percentage of die area consumed by the processing cores in

commercial microprocessors over the past years*.

The other potential drawback is the added propagation delay
at the shared ports to the system. Although with the technol-
ogy library and the detailed baseline architecture employed
in the evaluations of this study, the extra propagation delay
was of negligible impact, it is not out of the question that it
may be problematic in other settings. Whether the perform-
ance gain of core-selectability exceeds the potential loss due
to increased propagation delay at the shared ports is a ques-
tion that needs to be addressed in the context of the charac-
teristics of the technology and development setup in which it
is to be implemented.

VIII. CONCLUSION
This study investigates a potential solution to increasing

the utilization of existing provisioning in the cache and inter-
connection resources of a chip multiprocessor. The approach
is to place a number of differently designed cores (with dif-
ferent ILP-extracting units) within each node, and provide
the ability to select which core to use depending on the char-
acteristics of the applications at hand.

With the technology library considered in this study, it is
shown that employing this technique with two core designs
that focus on different ILP behavior, can result in better per-
formance across a wide range of parallel applications, com-
pared to a conventional design employing the best core de-
sign for overall performance across the same benchmarks. It
is also shown that this design solution can provide greater
throughput under multi-programmed workloads, by enabling
the system to transform into a heterogeneous design when
needed, i.e., providing selectability between homogeneity
and heterogeneity.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for

their valuable feedback. Muawya Al-Otoom and Greg Byrd
also provided important feedback to this study. Wim Heir-

* These estimates may be somewhat subjective as they were ex-

tracted by looking at the die photographs of the different proces-
sors, distinguishing the actual cores from the non-core (including
all levels of cache), and then measuring the proportional area.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Intel386

1990 2010

Niagara-1

Intel
Pentium

2000 2005

IBM
Power4

IBM
Power5

IBM Power6

IBM
Power3

Niagara-2 -

Intel
8086

Intel
8088

Intel
80286 Intel 486DX

Intel
Pentium III

Intel Core Duo

Intel
Pentium IV

1995

-

man of Ghent University provided much needed assistance
in running the multithreaded benchmarks on Simics.

This research was supported in part by NSF
grant No. CCF-0811707, and funding from Intel and IBM.
Any opinions, findings, and conclusions or recommendations
expressed herein are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

REFERENCES
[1] S. Hauck, A. DeHon, “Reconfigurable Computing: The The-
ory and Practice of FPGA-Based Computing,” Morgan Kaufman,
2008.
[2] D. Albonesi. “Dynamic IPC/clock rate optimization,” In Pro-
ceedings of the Int’l Symposium on Computer Architecture (ISCA),
1998.
[3] C. Kim, S. Sethumadhavan, M.S. Govindan, N. Ranganathan,
D. Gulati, D. Burger and S.W. Keckler, “Composable Lightweight
Processors”, In Proceedings of the Int’l Symposium on Microarchi-
tecture (MICRO), 2007.
[4] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core
Fusion: Accommodating software diversity in chip multiproces-
sors”, In Proceedings of the Int’l Symposium on Computer Archi-
tecture (ISCA), 2007.
[5] A. Lungu, D. J. Sorin, “Verification-Aware Microprocessor
Design”, In Proceedings of the Int’l Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2007.
[6] U Gajanan, M. Hassan, K. C. Yen, A. Kumar, A.
Ramachandran, D. Greenhill, “Implementation of an 8-core, 64-
Thread, Power-Efficient SPARC Server on a Chip”, IEEE Journal
of Solid-State Circuits, Vol. 43, No. 1, 2008.
[7] Rakesh Kumar, Norman P. Jouppi, Dean M. Tullsen, “Con-
joined-core Chip Multiprocessing” In Proceedings of Int’l Sympo-
sium on Microarchitecture (MICRO), 2004.
[8] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism”, In Proceedings of the
Int’l Symposium on Computer Architecture (ISCA), 1995.
[9] L. Hammond, B. A. Nayfeh, and K. Olukotun, “A single-chip
multiprocessor”, In Computer, volume 30, no. 9, Sept. 1997.
[10] R. Dolbeau and A. Seznec, “CASH: Revisiting hardware
sharing in single-chip parallel processor”, In Journal of
Instruction-Level Parallelism (JILP), vol. 6, April 2004.
(www.jilp.org/vol6).
[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. Jouppi, K. I.
Farkas, "Single-ISA Heterogeneous Multicore Architectures for
Multithreaded Workload Performance", In Proceedings of the Int’l
Symp. on Computer Architecture (ISCA), 2004.
[12] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, D. M.
Tullsen, “Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction”, In Proceedings of
the Int’l Symposium on Microarchitecture (MICRO), 2003.
[13] H. H. Najaf-abadi and E. Rotenberg, “Architectural Contest-
ing”, In Proceedings of the Int’l Symposium on High-Performance
Computer Architecture (HPCA), 2009.
[14] Saisanthosh Balakrishnan , Ravi Rajwar , Mike Upton , Kon-
rad Lai, “The Impact of Performance Asymmetry in Emerging
Multicore Architectures”, In Proceedings of the Int’l Symposium
on Computer Architecture (ISCA), 2005.
[15] R. E. Kessler, “The Alpha 21264 Microprocessor”, In IEEE
Micro, v.19 n.2, March 1999.
[16] http://www.crhc.illinois.edu/ACS/tools/ivm/about.html
[17] http://www.opencores.org
[18] http://www.opensparc.net
[19] J.E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.R.
Davis, P.D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, R.
Jenkal, "FreePDK: An Open-Source Variation-Aware Design Kit",
In Proceedings of the Int’l Conference on Microelectronic Systems
Education (MSE'07), 2007.
[20] M. Frank, W. Lee, S. Amarasinghe, “A software framework
for supporting general purpose applications on Raw computation
fabric”, MIT-LCS Technical Memo MIT-LCS-TM-619, 2001.

[21] J. Koppanalil, P. Ramrakhyani, S. Desai, A. Vaidyanathan,
and E. Rotenberg. “A Case for Dynamic Pipeline Scaling”, In Pro-
ceedings of the Int’l Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES'02), 2002.
[22] R. Berridge et. al. “IBM POWER6 microprocessor physical
design and design methodology”, In IBM Journal of Research and
Development, Volume 51, Issue 6, Nov. 2007.
[23] P. Salverda and C. Zilles. “Fundamental performance con-
straints in horizontal fusion of in-order cores”, In Proceedings of
the Int’l Symposium on High Performance Computer Architecture
(HPCA), 2008.
[24] N. Choudhary et al., "FabScalar", In the Workshop on Archi-
tecture Research Prototyping (WARP), 2009.
[25] http://www.virtutech.com
[26] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, D. A. Wood,
“Multifacet's general execution-driven multiprocessor simulator
(GEMS) toolset”, In SIGARCH Computer Architecture News, v.33
n.4, 2005.
[27] J. Emer et al., “Single-threaded vs. Multithreaded: Where
should we focus?”, IEEE Micro, vol. 27, no. 6, Nov./Dec. 2007.
[28] S. Chaudhry et al., “Rock: A high-performance SPARC CMT
processor”, IEEE Micro, vol. 29, no. 2, Mar./Apr. 2009.
[29] M. A. Suleman, O. Mutlu, M. K. Qureshi, Y. N. Patt, “Accel-
erating Critical Section Execution with Asymmetric Multi-Core
Architectures”, In Proceedings of the Int’l Conference on Architec-
tural Support for Programming Language and Operating Systems
(ASPLOS), 2009.
[30] R. Kumar, D. M. Tullsen, N. P. Jouppi “Core architecture
optimization for heterogeneous chip multiprocessors”, In proceed-
ings of the Int’l Conference on Parallel Architectures and Compi-
lation Techniques (PACT), 2006.
[31] H. H. Najaf-abadi, E. Rotenberg, “Configurational Workload
Characterization”, In Proceedings of the Int’l Symposium on Per-
formance Analysis of Systems and Software (ISPASS), 2008.
[32] R. Balasubramonian and D. Albonesi, “Memory Hierarchy
Reconfiguration for Energy and Performance in General-Purpose
Processor Architectures”, In Proceedings of the Int’l Symposium
on Microarchitecture (MICRO), 1999.
[33] R. Hum, “How to Boost Verification Productivity”, EETimes,
January, 2005.
[34] S. G. Dropsho, G. Semeraro, D. H. Albonesi, G. Magklis, M.
L. Scott, “Dynamically Trading Frequency for Complexity in a
GALS Microprocessor”, In Proceedings of the Int’l Symposium on
Microarchitecture (MICRO), 2004.
[35] H. H. Najaf-abadi, E. Rotenberg, “The Importance of Accu-
rate Task Arrival Characterization in the Design of Processing
Cores”, In Proceedings of the IEEE Int’l Symposium on Workload
Characterization (IISWC), 2009.
[36] E. Larson, S. Chatterjee, T. Austin, “The MASE Microarchi-
tecture Simulation Environment”, In Proceedings of the Int’l Sym-
posium on Performance Analysis of Systems and Software
(ISPASS), 2001.
[37] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, Y.
Solihin, “Scaling the Bandwidth Wall: Challenges in and Avenues
for CMP Scaling”, In Proceedings of the Int’l Symposium on Com-
puter Architecture (ISCA), 2009.
[38] M. Chen, K. Olukotun, “TEST: A Tracer for Extracting
Speculative Threads”, In Proceedings of the Int’l Symposium on
Code Generation and Optimization (CGO), 2003.
[39] M. Frank, C. A. Moritz, B. Greenwald, S. Amarasinghe, A.
Agarwal, “SUDS: Primitive Mechanisms for Memory Dependence
Speculation”, MIT/LCS Technical Memo MIT-LCS-TM-591, 1999.
[40] R. Calkin, R. Hempel, H. Hoppe, P. Wypior, “Portable pro-
gramming with the PARMACS Message-Passing Library”, In
Proceedings of the Parallel Comput., Special Issue on Message-
Passing Interfaces, 1994.
[41] T. Sherwood, E. Perelman, G. Hamerly, B. Calder, “Auto-
matically Characterizing Large Scale Program Behavior,” In pro-
ceedings of the Int’l Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2002.

