
Architectural Contesting

Hashem H. Najaf-abadi Eric Rotenberg
Department of Electrical and Computer Engineering

North Carolina State University
 {hhashem, ericro}@ece.ncsu.edu

Abstract

This paper presents results showing that workload
behavior tends to vary considerably at granularities of
less than a thousand instructions. If it were possible to
adjust the microarchitecture to suit the workload be-
havior at such rates, significant single-thread perform-
ance enhancement would be achievable. However, pre-
vious techniques are too sluggish to be able to effec-
tively respond to such fine-grain change.

An approach is proposed that exploits the multi-
core trend to enable swift adjustment in the employed
microarchitecture upon variation in workload behav-
ior. A number of cores that are each custom-designed
for optimum performance under a class of workloads
concurrently execute code in a leader-follower ar-
rangement. In this manner, effective execution auto-
matically and fluidly transfers to the most suitable mi-
croarchitecture as the workload behavior varies. We
refer to this approach as architectural contesting.

Two-way contesting yields an average speedup of
15% (maximum speedup of 25%) over a benchmark’s
own customized core. The paper also explores the in-
terplay between contesting and the number of core
types available in the heterogeneous multi-core. This
exposes the broader issue of constrained heterogeneous
multi-core design and how it influences, and may be
influenced by, contesting.

1. Introduction

A major impediment to the effectiveness of mi-
croarchitectural techniques is their high dependence on
the workload behavior. It is for this reason that previous
studies have proposed techniques that enable the em-
ployed microarchitecture to dynamically change and
become more suitable for the immediate workload be-
havior. Such techniques can be broadly categorized as
either adaptational or migrational approaches. Adapta-
tional approaches are based on a single processor de-
sign with adjustable design features (e.g., [9]). Migra-
tional approaches are based on a number of differently
designed processing cores, i.e., a heterogeneous multi-
core (e.g., [14]).

Regardless of the approach, the rate at which the
employed architecture can be effectively changed de-
pends on the rate at which 1) change in workload be-
havior can be detected, 2) the most suitable architecture
for the new code region can be determined, and 3) the

change can be performed. The challenge with adapta-
tional techniques is in determining when and how the
architecture should change. Similarly, the challenge
with migrational techniques is in determining when and
to which core execution should be transferred.

In this paper, we show that the speed of adjusting
to change in workload behavior that is essential for high
performance enhancement, is too fine-grain to be
achieved with prior approaches. However, the availabil-
ity of multiple cores can be exploited to enable the
speedy transfer of execution to the most suitable archi-
tecture. In the proposed approach, code is simultane-
ously executed on a number of cores, each architected
for optimum performance under a different class of
workload behavior. With each core broadcasting its
instruction results to the other cores, completion of in-
structions can be expedited in cores that are not suitable
for the immediate code region. Thus, upon change in
the workload behavior, the core that is most suitable for
the new workload behavior will be able to automatically
take the lead. In other words, detecting changes in
workload behavior, determining the best architectural
configuration, and transferring execution to that con-
figuration, all take place automatically and fluidly with
minimal latency. We refer to this technique as architec-
tural contesting (or simply contesting).

Contesting is orthogonal to other sources of single-
thread performance enhancement, as it exploits a unique
source of performance enhancement, namely, fine-grain
customization. Moreover, like other redundant thread-
ing architectures, it can be employed on a need-to-have
basis, providing robustness in how resources are em-
ployed (throughput or single-thread performance) and
how performance and power are balanced.

In the next section, the benefit of being able to
change the processor configuration at different rates is
examined. In Section 3, prior related work is outlined
and relevant issues discussed. Section 4 discusses an
implementation of architectural contesting. Section 5.1
describes the simulator, benchmarks, and the methodol-
ogy for finding application-level customized cores for
the SPEC2000 integer benchmarks. These benchmark-
customized cores form the palette of core types for de-
signing the various heterogeneous CMPs used in this
paper. Section 5.2 presents results and analysis of 2-way
contesting (contesting between two cores) assuming all
core types are available in the CMP. Section 6 evaluates
contesting in the context of more constrained heteroge-
neous CMP designs that have fewer core types. This
requires an in-depth analysis of different figures of

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-2009)

merit for guiding the selection of core types to be in-
cluded in the CMP. Continuing where Section 6 leaves
off, Section 7 discusses the subtle yet important inter-
play between contesting and the broader issue of de-
signing constrained heterogeneous CMPs. Section 8
concludes the paper.

Below are some highlights from the results and
analysis presented in Sections 5, 6, and 7:
o 2-way contesting yields an average speedup of 15%
(maximum speedup of 25%) over a benchmark’s own
customized core.
o For most benchmarks, most of the performance en-
hancement of contesting comes from heterogeneity in
the microarchitecture, although the benefit of heteroge-
neity in the L2 caches is noticeable in a few cases. For
both sources, it is contesting that enables this heteroge-
neity to be exploited at a fine granularity.
o The speedup of contesting is even more pronounced
in constrained heterogeneous CMPs: yielding an aver-
age speedup of 22% compared to executing the bench-
mark on the most suitable available core. The availabil-
ity of fewer core types reduces the benefit of applica-
tion-level heterogeneity. Contesting can compensates
for this deficit.
o Compared to the best homogeneous CMP design, a
constrained heterogeneous CMP design achieves an
average speedup of 11% without contesting and 34%
with contesting. In other words, contesting triples the
single-thread performance advantage of heterogeneity in
this system.
o Compared to the best homogeneous CMP design,
contesting between only two core types yields the same
or higher single-thread performance enhancement as
executing on the best of three core types.

2. Motivation: The speed of change

For each SPEC2000 integer benchmark we evalu-
ate the ability to switch execution between two microar-
chitectural configurations. The configurations are cho-
sen from among eleven configurations, each customized
for one of the benchmarks. They were extracted through
a simulated annealing exploration process for 70nm
technology (see section 5 for further details).

The execution of each benchmark’s 100-million in-
struction Simpoint [16] was simulated on the custom-
ized configuration of each benchmark and the number
of cycles to retire every 20 dynamic instructions was
logged. Then, for each benchmark and every combina-
tion of two configurations, every 20-instruction region
was considered to be retired at the rate of the faster of
the two for that region – while factoring in the clock
periods. The time spent in each region was then aggre-
gated to determine the total execution time, and from
that the best two configurations for each benchmark.
The same process was repeated for 40-instruction re-
gions, by summing the execution time of neighboring
20-instruction regions. The whole process was repeated
for regions of up to 83 million instructions.

Figure 1 illustrates the speedup attained for each
benchmark over the performance of its own customized
architecture by switching execution between two core
configurations at different rates. Also indicated in these
graphs are the two configurations that provided the best

speedup at each granularity. The different data-point
symbols indicate different two-core combinations.
While the best pair of cores for switching execution
between rarely varies across different granularities for
benchmarks such as bzip, it is highly dependent on the
granularity of switching in benchmarks such as perl. At
the coarsest granularity (i.e. the whole Simpoint), each
benchmark achieves its best performance on its own
customized configuration and attains no speedup.

Figure 1. Percentage speedup of switching
execution between two different configurations
at different granularities, over the performance
of the benchmark’s own customized configura-
tion.

These results illustrate that the greatest potential of
being able to dynamically adjust the microarchitecture
to the workload is attainable at granularities of less than
a thousand instructions. While the benchmarks gcc and
gzip attain a modest portion of their maximum speedup
in coarser granularities, most benchmarks display little
or no performance enhancement with coarser switching
of the microarchitecture. The knee in the curve in most
of these benchmarks occurs near the 1280-instruction
granularity. For instance the graph for average speedup
displays a mere 5% speedup for granularities in this
range, while displaying up to ~25% speedup for finer
granularities. Previously proposed approaches to dy-
namically adjusting the architecture to the workload are
unable to exploit such fine-grain change in workload
behavior.

bzip

0%

5%

10%

15%

20%

25%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(bzip, parser)
(bzip, tw olf)
bzip

crafty

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(crafty, gap)
(gap, gcc)
(gcc, parser)
gcc, gzip
(crafty, gcc)
craf ty

gcc

0%

5%

10%

15%

20%

25%

30%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(gcc, gap)
(gcc, parser)
(crafty, vpr)
(crafty, gcc)
gcc

gzip

0%

2%

4%

6%

8%

10%

12%

14%

16%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(gzip, perl)
(gcc, gzip)
(gzip, parser)
gzip

mcf

0%

5%

10%

15%

20%

25%

30%

35%

40%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(bzip, mcf)

parser

0%

5%

10%

15%

20%

25%

30%

35%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(parser, vpr)
(parser, tw olf)
parser

perl

0%

2%

4%

6%

8%

10%

12%

14%

16%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(perl, gap)
(gzip, perl)
(parser, perl)
(perl, vpr)
(perl, vortex)
(crafty, perl)
perl

twolf

0%

5%

10%
15%

20%
25%
30%

35%

40%
45%

50%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(bzip, parser)
(parser, tw olf)
(bzip, tw olf)
(tw olf, vpr)
tw olf

vortex

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(vortex, parser)
(gcc, parser)
vortex

vpr

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

20
160

1280
10240

81920

655
360

524
2880

4194
3040

(parser, vpr)
(tw olf, vpr)
vpr

Average of speedups

0%

5%

10%

15%

20%

25%

30%

20
160

1280
10240

8192
0

655360

5242
88

0

41943040

gap

0%

2%

4%

6%

8%

10%

12%

14%

16%

20 16
0

12
80

10
24

0
81

92
0

65
53

60

52
42

88
0

41
94

30
40

(gap, gcc)
(gap, perl)
(gap, parser)
(gap, gzip)
gap

In most cases the customized microarchitecture of a
benchmark is among the best two cores to switch execu-
tion between. However, for twolf, the benchmark that
attains the largest fine-grain speedup, the customized
architectures of vortex and parser are the best two. This
is notable as an application-level customized architec-
ture is forced to compromise performance in fine-grain
regions in order to attain good overall performance.
This infers that switching execution between architec-
tures that are custom designed for applications may not
necessarily provide the best performance enhancement
from fine-grain switching. Nevertheless, these architec-
tures are good candidates for improving application-
level performance and multi-programming throughput –
issues of general importance in a CMP design.

3. Related work and discussion

The slipstream paradigm [3] employs two simulta-
neous execution streams of the same code that interact
to improve overall single-thread performance. One exe-
cution stream is expedited through speculatively skip-
ping ineffectual work, but needs to be checked by a
redundant stream. However, the redundant stream itself
is also expedited as the speculative stream passes it
highly accurate branch and value predictions. More
recent related work is the paceline leader-checker mi-
croachitecture [15]. In this approach a leader-core runs
the thread at a higher-than-rated frequency, while pass-
ing execution hints and prefetches to a safely-clocked
checker core.

In both these techniques, the leading core is fixed
(paceline occasionally swaps cores’ roles for tempera-
ture control) and is expedited in a manner that needs to
be checked for correctness, thus the need for forwarding
instruction results to a checker. In contesting however,
the leading core varies depending on the workload be-
havior, and gains lead purely because it is more suitable
for the immediate region of code. Thus, there is no need
for it to be checked. Instruction results are forwarded to
the other cores not for checking, but rather to keep them
from falling behind so they can take lead as swiftly as
possible when the workload behavior changes.

The datascalar paradigm [12] enables single thread
performance enhancement through enabling the distri-
bution of the program data-set across the local memory
of multiple cores. Frequency scaling techniques [21] are
also related work in that they provide variability in the
performance-power tradeoff.

This paper culminates our precursor proposal [20],
which cursorily evaluated contesting with little architec-
tural diversity (two processor widths).

3.1. Changing the microarchitecture

One approach to enabling change in the employed
microarchitecture is to have an adaptable microarchitec-
ture. However, it is generally infeasible to maintain a
balanced pipeline as individual architectural units are
scaled. This imbalance is inevitable due to the fact that
all microarchitectural units are tied to a common pipe-
line structure.

Reconfigurable computing [23] exploits field-
programmable technology to build processors that can

fundamentally transform their architecture. Such ap-
proaches can provide abundant architectural diversity.
However, the implementation of a specific architecture
in reconfigurable technology is prone to severe sub-
optimal fixed-configuration performance.

A different approach is to employ multiple process-
ing cores with different designs. Kumar et al. investi-
gate the use of heterogeneous multi-core architectures
[1]. They show that the incorporation of processors that
have a range of high to low complexity (and perform-
ance) in a constrained die area can result in greater
throughput for multi-threaded workloads. In more re-
cent work, they find “non-monotonic” architectural di-
versity to result in better throughput enhancement [14].

3.2. Determining the best microarchitecture

A large range of prior work has studied different
approaches to enable aspects of a processor microarchi-
tecture to change and become more suitable for the im-
mediate workload behavior in order to achieve better
power efficiency. Ponomarev et al. [5] and Folengnani
et al. [6] propose approaches to learning the optimum
issue queue size, and Yang et al. [7] propose cache
miss-rate as a metric for determining when to downsize
or upsize an adaptable I-cache.

In Complexity Adaptive Processing (CAPs) [4], a
single processor is architected such that the tradeoff
between IPC and clock-rate can be dynamically altered.
An essential component of the CAP architecture is the
“configuration control” unit which selects the optimal
configuration for the immediate workload through a
heuristic learning technique or profiling information.
Dhodapkar and Smith [2] and Balasubramonian and
Albonesi [8] propose tuning processes for identifying
the best-suited configuration for the immediate code.
Temporal approaches, such as the Rochester algorithm
[8] or signature based approaches [2], require lengthy
tuning processes. Positional approaches [10] enable
faster adaptation, and have been found to be more effec-
tive, yet they are unsuitable for fine-grain switching due
to the drastic increase in storage requirement.

Dropsho et al. [11] propose the separation of mi-
croarchitectural units, in what is referred to as the Glob-
ally-Asynchronous Locally-Synchronous (GALS) de-
sign. In this approach, different units are asynchronous
to each other, thus allowing each to be scaled independ-
ently. This allows for more predictability in the effect of
independently scaled units on overall performance.
Thus, it relieves the system of the need for an exhaus-
tive tuning process that tries out different configura-
tions.

Chen et al. [13] investigate the potential of employ-
ing pipelines of different widths and dynamically direct-
ing work to them based on local ILP. They use the par-
allelism metrics gathered from a dynamic Data Depend-
ence Tracking mechanism to steer windows of instruc-
tions to suitable pipelines. In order to avoid most of the
inter-cluster penalty, they limit switching between clus-
ters to coarse granularities and continuously forward
values to the disabled pipeline. However, data depend-
ence tracking takes a two-prong view of the microarchi-
tectural design space, consisting of either simple pipe-
lines that can be clocked at high frequencies or wide

superscalars that can be clocked at lower frequencies.
In reality, a large range of microarchitectural parame-
ters affect overall performance. After all, even a wide
superscalar processor can be clocked at a high fre-
quency if it is pipelined deeply.

4. Implementation

The implementation of a contesting system resem-
bles other redundant-execution leader-follower architec-
tures, such as Slipstream [3], SRT [18], AR-SMT [17],
DCE [22], Paceline [15] and DataScalar [12]. The main
novelty of contesting is not in the employed mecha-
nisms, but rather the purpose for which they are em-
ployed. This section describes the implementation of a
contesting system. While the description is generalized
for N-way contesting, the subsequent results section is
for a 2-way contesting system.

Figure 2 illustrates an architectural contesting
multi-core system. The four cores, A, B, C, and D, con-
currently attempt to execute the same code. We use
Core C in the figure to explain the mechanics of con-
testing.

Figure 2. A generalized architectural contesting
multi-core system.

4.1. Leveraging results from other cores

4.1.1. Global result buses. A core broadcasts the re-
sults of its retired instructions to the other cores via its
own global result bus (GRB). For example, Core C has
its own outgoing GRB. Its GRB has three sinks, at
Cores A, B, and D.

Conversely, Core C receives results from three in-
coming GRBs, the GRBs of Cores A, B, and D. Since
Core C may have a different clock frequency from the
other cores, synchronizing queues, borrowed from re-
cent GALS proposals [11], are used to interface Core C

with its three incoming GRBs. Results from the three
incoming GRBs are then transferred to three result
FIFOs within Core C.

4.1.2. Pop counters and fetch counter. Core C main-
tains a “pop counter” for each of its three result FIFOs,
as shown in Figure 3. The pop counter of a result FIFO
is incremented each time Core C pops a result from it.
For example, the pop counter for result FIFO A is 106,
meaning that the results of 106 retired instructions from
Core A have been popped. The implication is that the
head-entry of result FIFO A contains (or will contain)
the result of retired instruction #107 from Core A. Ef-
fectively, from the values of the pop counters A, B, and
D, we can infer the logical positions in the dynamic
instruction stream of the head-entries of the result FI-
FOs A, B, and D. Their logical positions are explicitly
shown in Figure 3 by their horizontal placement along
the retired dynamic instruction stream (which is shown
at the top of the diagram). As shown, the head-entry of
result FIFO A is currently at retired instruction #107
and the head-entries of result FIFOs B and D are both at
retired instruction #102.

100 101 102 103 104 105 106 107 108 109 110 111

DYNAMIC INSTRUCTION STREAM

107

Result FIFO A

synchronized results from Core A
pushpop

A pop counter

106

102

Result FIFO B

synchronized results from Core B
pushpop

102

Result FIFO D

synchronized results from Core D
pushpop

101

D pop counter

103 104 105 106 107 108 109

SCENARIO #1: Core C does not trail: C fetch counter > MAX(A, B, D pop counters)

Core C’s instruction window

retire fetch

C fetch counter

109

Pop & Discard results from Result FIFO A, B, D

B pop counter

101

Figure 3. Example where Core C does not trail.

Core C also maintains a single “fetch counter” that
indicates how many correct instructions (those that will
ultimately be retired) it has fetched. (The fetch counter
may be temporarily incorrect due to a mispredicted
branch in Core C. This issue is handled at the end of
this subsection.) Effectively, from the value of the fetch
counter, we can infer where the most recently fetched
instruction, at the tail-entry of Core C’s instruction win-
dow, is logically positioned within the dynamic instruc-
tion stream. As before, the logical position of Core C’s
instruction window (all instructions that have been
fetched but not yet retired) is explicitly shown in Figure
3 by its horizontal placement along the retired dynamic
instruction stream. In the example Scenario #1, the fetch
counter contains 109, therefore, the newest instruction
at the tail-entry of Core C’s instruction window is to-be-

Fetch

Core C Core D

Core A
Global Result Buses

Rename

Issue/Execute

GRB of Core C
Retire (ROB)

Retired results

Result FIFOs Synchronizing
Queues

GRBs of other cores:

Core B

A
B
D

retired instruction #109 (assuming the fetch unit is on
the correct path).

By comparing its fetch counter to the maximum of
its three pop counters, Core C can determine whether or
not it is trailing the most advanced result FIFO. There
are only two possible scenarios:
1. Scenario #1: In Figure 3, result FIFO A leads the

other two result FIFOs because it has the highest pop
counter, 106. The fetch counter, 109, is higher still.
This means Core C is not trailing and cannot be ac-
celerated by any of the other cores’ results. When
Core C fetches the next instruction, #110, none of the
result FIFOs is advanced enough in the dynamic in-
struction stream to provide a result for it. If this next
instruction is a branch, it must be predicted and exe-
cuted. If it is a register-producing instruction, it must
execute to produce its value. As long as the fetch
counter is greater than the maximum pop counter, late
results are popped and discarded from all result FI-
FOs as soon as these results are received from the
GRBs.

2. Scenario #2: Core C’s lead over the most advanced
result FIFO may erode. This erosion reaches a turning
point when the fetch counter equals the maximum
pop counter, as shown in Figure 4 (the trailing result
FIFOs B and D are not shown). At this turning point,
Core C’s fetch unit and the head-entry of the most
advanced result FIFO are logically at the same in-
struction in the dynamic instruction stream. In Figure
4, the next instruction to be fetched by Core C is
#127, which happens to be the instruction for which
the head-entry of result FIFO A contains a result.
This is no coincidence: it is because the A pop
counter (number of instructions popped from result
FIFO A) and the fetch counter (number of correct in-
structions fetched by Core C) match. A communica-
tion channel is established from result FIFO A to
Core C’s fetch unit. Now, instead of popping and dis-
carding late results from result FIFO A as soon as
they arrive, the FIFO is popped when Core C’s fetch
unit fetches the next instruction (causing both the A
pop counter and the fetch counter to increment, there-
fore, they remain equal). The popped result is paired
with the newly fetched instruction. If the result FIFO
A is empty when the next instruction is fetched, how-
ever, it simply means that Core C is no longer trailing
and the tables turn again to Scenario #1 above.

The fetch counter may be speculative due to

branches. Core C’s fetch counter is guaranteed to be
correct when it is trailing (Scenario #2) because known
branch outcomes are available from the result FIFO A
(no mispredictions). On the other hand, it is not guaran-
teed to be correct when Core C is not trailing because
the fetch unit must predict branches as usual. If a branch
is mispredicted, the fetch counter is temporarily incor-
rect because it counts incorrect instructions that are not
ultimately retired. This is dealt with simply by check-
pointing the fetch counter at every branch. When a mis-
predicted branch executes, the fetch counter is restored
to its correct value representing instructions up to and
including the branch.

120 121 122 123 124 125 126 127 128 129 130 131

DYNAMIC INSTRUCTION STREAM

127 128

Result FIFO A

synchronized results from Core A
pushpop

A pop counter

126

120 121 122 123 124 125 126

SCENARIO #2: Core C trails: C fetch counter == MAX(A, B, D pop counters)

Core C’s instruction window

retire fetch

C fetch counter

126

Pop & Use results from Result FIFO A
Pop & Discard results from Result FIFO B, D

Figure 4. Example where Core C trails.
A subtle corner case arises when Core C is not

trailing, its fetch unit mispredicts a branch, and then a
retired instance of the branch is received in the most
advanced result FIFO before the branch is resolved by
Core C itself. Earlier, we explained that when Core C is
not trailing (Scenario #1), all received results are im-
mediately popped and discarded from the result FIFOs.
To handle the corner case, however, received branches
are not summarily discarded. Instead, after popping a
branch and incrementing the pop counter, the value of
the pop counter is compared against the checkpointed
fetch counter of the oldest unresolved branch in Core C.
If they match and the branch is found to be mispredicted
(by checking its prediction against the popped branch
outcome), then the mispredicted branch is resolved
early. Note that the fetch counter will be restored to its
checkpointed value which naturally matches the pop
counter. This means Core C is now perceived to be
trailing (fetch counter = maximum pop counter), and the
table has turned from Scenario #1 to Scenario #2. This
corner case is depicted in Figure 5.

4.1.3. Injecting results. As explained in the previous
subsection, when Core C is trailing, it pairs popped re-
sults from result FIFO A with its fetched instructions. A
result is used in lieu of executing the instruction. The
instruction is completed early in the fetch stage, if it is a
branch, or in the rename stage, if it is a register-
producing instruction. Early completion in the fetch
stage is implemented by overriding the branch predic-
tion logic. Early completion in the rename stage is im-
plemented by directly writing a value into the destina-
tion physical register. This requires stealing register file
write ports from the execution core. The transfer of
ownership of write ports, from the writeback stage to
the rename stage, is gradual. Any already-issued in-
structions will be able to write their values in the write-
back stage as promised by the scheduler. Over the span
of several cycles, fewer write ports are allocated to the
scheduler and more write ports are allocated to the re-
name stage. This is consistent with the fact that the issue
queue is gradually emptied as no new instructions are
dispatched into it. When it is completely drained, all
write ports are allocated to the rename stage.

A more straightforward alternative to this port real-
location scheme is to continue dispatching instructions
into the issue queue but to mark them as immediately
ready, since they already have their destination values

with them: they will issue expeditiously (free of all data
dependences) and write their values in the writeback
stage like usual.

100 101 102 103 104 105 106 107 108 109 110 111

DYNAMIC INSTRUCTION STREAM

107
(br)

Result FIFO A

synchronized results from Core A
pushpop

A pop counter

106

103 104 105 106 107
(br) 108 109

SCENARIO #1: Core C does not trail: C fetch counter > MAX(A, B, D pop counters)

Core C’s instruction window

retire fetch

C fetch counter
109

Pop & Discard results from Result FIFO A, B, D

107checkpointed
fetch counter

108

Result FIFO A

synchronized results from Core A
pushpop

A pop counter

107

103 104 105 106 107
(br)

Core C’s instruction window

retire fetch

C fetch counter
107107checkpointed

fetch counter

SCENARIO #2: Core C trails: C fetch counter == MAX(A, B, D pop counters)

Pop & Use results from Result FIFO A
Pop & Discard results from Result FIFO B, D

Figure 5. Corner case: Resolving misprediction
early causes transition from Scenario #1 to #2.
4.1.4. Lagging distance. The fetch counter and pop
counters only need to be large enough to represent the
maximum number of dynamic instructions that is al-
lowed to separate the leading and lagging cores.

By leveraging the result FIFOs, execution in the
lagging cores will never fall too far behind. Thus, when
the code phase changes, all the cores will be contested
fairly in the new phase without the need for actually
detecting the change of phase, and the core that is best
suited will automatically be able to take lead.

How far behind a lagging core is depends on the
physical propagation delay between cores. When the
characteristics of the code change, it is this lagging dis-
tance that a core needs to catch-up on before it can be-
come the head of the pack and commence effective exe-
cution. Note that it is not necessary for all the lagging
cores to receive the result of a retired instruction in the
same cycle. This issue is of convenience, as different
cores may be at differing distances from each other.

Although the frequencies and retirement widths of
the cores may differ, the peak rate at which instruction
results are retired by any core – in instructions-per-
second (IPS) – must be sustainable by all other cores.
That is, the peak retirement rate (in IPS) of any core
must be less than or equal to the peak rate (in IPS) at
which instruction results can be written to the register
file and memory in any other core. Without this condi-
tion, a lagging core may unboundedly fall behind, re-
sulting in excessive catch-up time and therefore defeat-

ing the purpose of architectural contesting. We refer to
a lagging core that cannot keep-up with the leading core
as a saturated lagger. This scenario can be dealt with
simply by disabling contesting mode for the saturated
lagger.

4.2. Handling stores

Stores are redundantly performed in the private
cache levels of the cores. The private cache levels are
configured to use the write-through policy to simplify
contesting (this does not preclude using the write-back
policy in non-contesting modes). To prevent lagging
cores from incorrectly observing future stores of less-
lagging cores, stores stop short of writing through to the
shared cache level. Here, we employ a synchronizing
store queue similar to SRT’s store queue [18].

In SRT, the store queue waits for both instances of
a store (the leading and trailing threads’ instances), be-
fore performing a single merged instance to the L1
cache, and loads from the leading thread search the
store queue in addition to the L1 cache. Similarly, the
synchronizing store queue employed for contesting
buffers stores and keeps track of which cores have pri-
vately performed each store. When the oldest store has
been privately performed by all cores, a single merged
instance is performed to the shared cache level.

4.3. Handling exceptions

A synchronous exception (e.g., error, TLB miss,
system call) will be detected by all the contesting cores,
although not at the same time. We could take the same
approach as previous work [17][3] that designates one
core to handle the exception (terminate threads in the
non-designated cores, service the exception in the des-
ignated core, and refork threads in the non-designated
cores including preloading TLB entries). We advocate a
new approach: a redundant-thread-aware parallelized
exception handler. An explicitly-parallel software han-
dler can perform the necessary coordination to achieve
correct results for all of the cores, avoiding the over-
head of terminating and reforking threads. A core calls
the exception handler when it reaches the exception.
The handler increments a semaphore and checks its
value to determine whether or not all contesting cores
have reached the exception. If no, the handler on this
core goes to sleep. If yes, the handler wakes up all the
other sleeping handlers and they may coordinate han-
dling the exception on all the cores.

For asynchronous exceptions caused by external in-
terrupts, one of the cores is designated to listen for ex-
ternal interrupts. In this case, it is difficult to stop all
redundant threads at the same point without resorting to
an elaborate hardware handshaking protocol, and so the
first approach is used.

5. Measuring up to the very best

5.1. Methodology

The sim-mase simulator from the Simplescalar
V4.0 toolset [24] has been modified to model the con-

testing implementation described above. The simulator
was modified to enable time-synchronous execution of
multiple simulator instances that model different pro-
portional clock periods. In order to model time-
synchronous execution, the simulator instances perform
handshaking in a round-robin arrangement. Receiving a
handshaking signal signifies the passing of a base time-
unit (specifically 0.01ns). Each simulator instance exe-
cutes an iteration of its top-level simulation loop upon
the passing of as many time-units as there are in the
clock period it is modeling. For example, a simulator
instance modeling a 3GHz core will execute one itera-
tion of its top-level simulation loop every 33 time-units.

The benchmarks used throughout are the 100-
million instruction SimPoints [16] of the SPEC2000
integer benchmarks (except for eon, which we were
unable to compile with the Simplescalar compiler).

In this study, we consider the pool of prospective
cores in the heterogeneous CMP to consist of cores that
are customized for individual SPEC2000 integer
benchmarks in 70nm technology. We used the XpScalar
design-space exploration framework [19], which em-
ploys a simulated-annealing exploration process, to
arrive at the benchmark-customized cores. XpScalar
varies multiple design parameters, including superscalar
width, register-file/ROB size, issue-queue size, load-
store queue size, L1 and L2 cache configurations, and
clock frequency. The depth of pipelining of various
architectural units/stages is consistent with the proces-
sor’s frequency and the complexity of these units/stages.
The customized core of each benchmark and its per-
formance with respect to all benchmarks is reproduced
in Appendix A.

5.2. Results

We limit our evaluation to 2-way architectural con-
testing (contesting between two cores). An issue of im-
portance is the considered core-to-core latency, or the
time it takes for an instruction result to travel from one
core to another. In this part of the study, a one nanosec-
ond (three cycles of a 3 Ghz processor) core-to-core
latency is considered. The effect of scaling this latency
is measured in Subsection 5.2.2.

Figure 6 shows the performance (instructions per
time, IPT) of contesting, for each benchmark. For each
benchmark, the two cores that are contested (from
among all benchmark-customized cores) are those two
which give the highest performance when contested; the
pair of contesting cores used by a given benchmark is
labeled above its bar in the graph. For comparison, the
IPT of each benchmark on its own customized core is
also shown. Contesting yields an average speedup of
15% over a benchmark’s own customized core. The
largest speedup is attained for the benchmark gcc at
25%. Four out of the eleven studied benchmarks attain
more than 18% speedup.

The averaged results in Figure 1 (of Section 2)
show that achieving speedups in the range of 15% over
a benchmark’s own customized configuration requires
the ability to switch execution between configurations at
a rate of around 100 instructions. This number of in-
structions is proportional to the number of instructions
in the pipeline of an average configuration at any in-

stance. However, using previously proposed techniques
to detect changes in workload behavior, determine a
suitable configuration, and transfer execution to it, can
most probably be achieved at a rate of a few thousand
instructions at the very best – which drastically dimin-
ishes the benefit of being able to adjust the microarchi-
tecture.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

cra
fty

ha
r. m

ea
n

in
st

r.
pe

r t
im

e-
un

it
(IP

T)

Ow n customized core Contesting best tw o cores

bzip
parser gap

gcc
parser
tw olf

gzip
perl

mcf
bzip

parser
vpr parser

tw olf bzip
parser

bzip, crafty

parser
vpr

bzip,
crafty

Figure 6. IPT of each benchmark for 1) execu-
tion on its own customized core and 2) con-
testing between two cores that maximize con-
tested-execution performance (the two con-
tested cores are shown above the bars).
5.2.1. The source of performance enhancement. A
question that may arise is how integral heterogeneity in
the microarchitecture of the cores is to this performance
enhancement, and whether the origin is heterogeneity in
the cache configurations. Differentiating the heteroge-
neity in the caches from that in the microachitecture of
the cores can provide insight into the origin of the per-
formance enhancement. However, note that the best
cache configuration for a workload is not independent
of other microarchitectural design factors.

In order to address this question, each benchmark is
executed with contesting between two cores that differ
only in their L2 caches. One of the cores is one of the
best two cores for contesting. The other is the same
core, but with its L2 cache (configuration and access
latency) replaced with that of the other best core for
contesting. For example, bzip was originally contested
between the customized cores of bzip and parser (con-
testing these two cores yielded the highest perform-
ance). For the modified experiment, bzip is contested
between two bzip cores, except that one of these other-
wise identical cores has the L2 cache of the parser core.
This experiment is repeated with two parser cores, one
of which has the L2 cache of bzip. The higher perform-
ing trial of these two trials is used.

Figure 7 shows the speedup of contesting. The total
height of each bar represents the speedup of contesting
in the original experiment (heterogeneity in both the
microarchitecture and L2 cache). The bottom fraction of
each bar represents the speedup of contesting in the
modified experiment, isolating the performance en-
hancement due to heterogeneous L2 caches. These re-
sults show that, for most of the benchmarks (other than
gcc and parser), only a minor portion of the perform-
ance enhancement can be attributed to only heterogene-
ity in the L2 cache. All the same, it is contesting that
enables this heterogeneity to be exploited at a fine
granularity.

0%
5%

10%
15%
20%
25%
30%

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

cra
fty

av
era

ge

%
 s

pe
ed

up

Overall speedup of contesting
Contribution of L2 cache heterogeneity

Figure 7. Isolating the contribution of L2 cache
heterogeneity to the performance enhance-
ment of contesting.
5.2.2. The effect of core-to-core latency. Figure 8
shows the effect that the core-to-core latency has on the
average speedup of contesting between the best two
cores for each benchmark over the performance of the
benchmark on its own customized core. These results
show a decrease in the performance enhancement of
contesting as this latency increases. At a latency of
100ns the average performance benefit reduces to 6%.
These results show the importance of the propagation
delay of the GRB.

Moreover, these results also show that different
workloads are affected differently by the core-to-core
latency. For instance, while the speedup of a benchmark
such as bzip degrades by less than 1% when the latency
increases from 1ns to 2ns, that of gzip decreases by
more than 35% percent for the same increase in latency.

0%

5%

10%

15%

20%

25%

1ns 2ns 10ns 100ns no contesting

%
 s

pe
ed

up

bzip gap gcc
gzip mcf parser
perl tw olf vortex
vpr crafty average

Figure 8. Speedup of contesting for different
core-to-core latencies over customized cores.

6. Evaluation with limited core types

Section 5 evaluates the performance enhancement
attainable from contesting between the best two core
types for fine-grain switching, for each benchmark.
Since the best pair of contesting cores differs from one
benchmark to the next, the previous evaluation implies
that the customized core types of all benchmarks are
available in the heterogeneous CMP. However, there
may be fewer core types in a realistic heterogeneous
CMP. In Section 6.1, we first address general heteroge-
neous CMP design and what influences the best set of
core types to employ when the number of core types is
limited. In Section 6.2, we apply these principles to
design heterogeneous CMPs with only two core types.
Finally, in Section 6.3, we evaluate the performance

enhancement of contesting between the cores of the
systematically-designed dual-core-type heterogeneous
CMPs from Section 6.2.

6.1. The design goal

The best combination of microarchitectural con-
figurations to employ in a heterogeneous system de-
pends on the design goal.

If the design goal is to minimize the total execution
time of a set of benchmarks when submitted to the sys-
tem one-by-one – as is customary in single-core mi-
croarchitecture evaluation – a representative figure of
merit is the harmonic-mean of the performance (instruc-
tions per time unit, IPT) of all benchmarks when each is
executed on the most suitable core available. This figure
of merit is improved if the benchmarks are weighted by
the frequency with which they occur in the system.
Without these weights, benchmarks that run infre-
quently but have long run-times may have dispropor-
tionate influence on the perceived-best core types.

Benchmark weights may not be available, however.
In this situation, it may be desirable to use the average
(arithmetic-mean) of IPTs as the figure of merit. Aver-
age IPT focuses on raw throughput instead of total time,
which may lead to more performance-robust core types
in the face of uncertain benchmark frequencies.

Neither of these metrics (harmonic-mean IPT and
average IPT) accounts for core-contention between jobs
and may thus bring about imbalance in the number of
benchmarks better suited for the different core types.
For example, if the design goal is simply to maximize
either the harmonic-mean IPT or average IPT for ten
benchmarks on two core types, the ultimate CMP design
may be guided toward one core type that is favored by
nine benchmarks and one core type that is favored by
one benchmark. While this CMP design is optimum
when there is no contention between jobs, it is not nec-
essarily optimum when there is contention.

If contention between jobs is a concern, the best
combination of core types to employ in the system is
influenced by 1) the rate and distribution of job submis-
sions and 2) how jobs are scheduled. Below, we de-
velop a figure of merit that accounts for contention,
which is based on two simplifying assumptions regard-
ing job distribution and scheduling, respectively. First,
we consider a uniform distribution of job submissions.
That is, jobs have an equal probability of belonging to
one of the considered workload types (i.e., one of the
benchmarks). Unevenness in the distribution can be
modeled by assigning importance weights that are pro-
portional to the probability of a workload type being
submitted to the system. Burstiness in the arrival of jobs
of the same workload type decreases the value of het-
erogeneity. Second, we consider a scheduling policy
that directs a job to the core type for which it is best
suited, even if all cores of that type are currently busy
and the job must be queued, instead of directing it to the
best available core. This policy is reasonable if all cores
are heavily loaded.

In this setting, the arrival rate of jobs at the job-
queue of a specific core will be proportional to the
number of job types that prefer that core. Therefore,
according to Little’s law, the average number of jobs in

a job-queue will also be proportional to the number of
job types that prefer the corresponding core. Therefore,
a representative figure of merit can be attained by divid-
ing the performance (IPT) of each benchmark when
executed on the most suitable core type in the CMP
design by the number of benchmarks that share the core
type, and then taking the harmonic mean. We refer to
this figure of merit as the contention-weighted har-
monic-mean IPT.

6.2. Exploring combinations of cores

The best combination of core types to employ in a
heterogeneous CMP is determined by searching all the
possible combinations of core types for one that maxi-
mizes the considered figure of merit. Once again we
limit the pool of prospective core types to the custom-
ized cores for individual SPEC2000 integer bench-
marks. In addition, the number of core types in the het-
erogeneous CMP is limited to only two. This does not
limit the total number of cores, that is, conceivably
there could be multiple instances of each core type.

Since we separately consider three different figures
of merit – average IPT (avg), harmonic-mean IPT (har),
and contention-weighted harmonic-mean IPT (cw-har),
as discussed in the previous section – we arrive at three
different heterogeneous CMP designs, HET-A, HET-B,
and HET-C, respectively. These designs are displayed
in the first three rows of Table 1. The table shows which
two core types comprise each of HET-A, HET-B, and
HET-C. A core type is identified by the name of the
benchmark for which it is customized, e.g., the custom-
ized core type for the gcc benchmark is named “gcc”.
HET-A is comprised of the parser and twolf core types,
HET-B is comprised of the gcc and mcf core types, and
HET-C is comprised of the bzip and crafty core types.

Since this paper is ultimately concerned with sin-
gle-thread performance (the benefit of contesting), re-
gardless of the figure of merit used to arrive at a CMP
design, the last column of Table 1 shows the harmonic-
mean of the IPTs of all benchmarks when each is run on
the most suitable core of a given design. Since HET-B
was designed using this figure of merit to begin with, as
expected, it has the highest harmonic-mean IPT among
HET-A, HET-B, and HET-C.

Two other designs are included in the last two rows
of Table 1. The first of these, HOM, is a homogeneous
CMP design with only one core type, namely, the core
type that gives the best performance on average for all
benchmarks. Of all the customized core types, the gcc
core type is the best overall (it maximizes both average
IPT and harmonic-mean IPT). The last design, HET-
ALL, is a heterogeneous CMP comprised of all the cus-
tomized core types, so that each benchmark runs on its
customized core.

While the gcc core is the best individual performer
among the benchmark-customized cores, it is possible
for there to be an even better core that is explicitly cus-
tomized for the benchmark suite as a whole. We con-
ducted an exploration of the design space for the aggre-
gate performance across all benchmarks using the
XpScalar exploration process [19]. The customized
core that was attained provided negligible overall per-
formance enhancement over that of the gcc core.

Table 1. Five CMP designs and their perform-
ance.

CMP
design

Designed
based on which
figure of merit?

Constituent core types

Harmonic-mean
of IPT

HET-A avg parser & twolf cores 1.76
HET-B har gcc & mcf cores 1.88
HET-C cw-har bzip & crafty cores 1.87
HOM avg or har gcc core 1.57

HET-ALL Not applicable customized cores of all
benchmarks 2.1

The performance results in the last column of Table
1 show that, when exploited at the application level,
unconstrained heterogeneity can provide up to a 34%
increase in harmonic-mean IPT (HET-ALL compared
to HOM). With only two core types, HET-C provides a
19% increase in harmonic-mean IPT (HET-C compared
to HOM). In other experiments, not shown here, we
determined that the overall performance of a heteroge-
neous CMP with four core types is within 2% of the
performance of HET-ALL.

Figure 9 displays the IPTs of individual bench-
marks on the five CMP designs of Table 1. For a given
CMP design, a benchmark is run on the most suitable
core type available in that design. These results show
how the choice of available core types impacts individ-
ual benchmark performance.

0

0.5

1

1.5

2

2.5

3

3.5

bzip gap gcc gzip mcf parser perl tw olf vortex vpr crafty

in
st

r.
pe

r t
im

e-
un

it
(IP

T)

HOM HET-A HET-B HET-C HET-ALL

Figure 9. IPT for each benchmark when exe-
cuted on the most suitable core type available
in the CMP, for five CMP designs.

In this section, we evaluate the single-thread per-
formance enhancement of contesting on top of the HET-
A, HET-B, and HET-C CMP designs from the previous
section. The chief purpose of this exercise is to study
contesting in the context of a heterogeneous CMP that
was systematically designed to exploit application-level
heterogeneity with a limited number of core types, and
not explicitly for the purpose of fine-grain switching
within an application. This is the expected setting in
which contesting might be deployed.

Figure 10 shows the performance (instructions per
time unit, IPT) of each benchmark, for three scenarios:
1) execution on HOM (“HOM”), 2) execution on the
most suitable core type of HET-A (“HET-A, no contest-
ing”), and 3) contested execution between the two core
types of HET-A (“HET-A, contesting”).

Contesting on HET-A yields an average speedup of
16% and a maximum speedup of 41% (for gcc) com-
pared to not contesting. An interesting result is that,
while the benchmarks gcc, perl, and crafty observe
lower performance on the better of the two cores of

HET-A compared to the overall best core provided by
HOM, their contested execution with them more than
compensates for the deficit.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

cra
fty

ha
r. m

ea
n

in
st

r.
pe

r t
im

e-
un

it
(IP

T)

HOM HET-A, no contesting HET-A, contesting

Figure 10. Performance of each benchmark on
HOM, HET-A without contesting, and HET-A
with contesting.

Figure 11 shows the IPT of each benchmark under
the same three scenarios, except that the HET-B CMP
design is used instead of the HET-A CMP design. From
Table 1, HET-B is comprised of the gcc and mcf core
types. Due to the long clock period of the mcf core, it
tends to become a saturated lagger in the contested exe-
cution of half of the benchmarks, resulting in little bene-
fit for these. Nevertheless, contesting on HET-B yields
an average speedup of 13% and a maximum speedup of
39% (for twolf) compared to not contesting.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

cra
fty

ha
r. m

ea
n

in
st

r.
pe

r t
im

e-
un

it
(IP

T)

HOM HET-B, no contesting HET-B, contesting

Figure 11. Performance of each benchmark on
HOM, HET-B without contesting, and HET-B
with contesting.

The highest overall speedup is attained for contest-
ing between the two core types of the HET-C CMP de-
sign (featuring the bzip and crafty core types). Figure 12
shows the results for HET-C. Contesting on HET-C
yields an average speedup of 22% and a maximum
speedup of 50% (for vpr) compared to not contesting.
For the benchmarks gzip, vortex, and vpr, contesting
prevents performance from dipping below that of the
overall best core provided by HOM, and even boosts
performance significantly above it. These speedups are
attained through active participation of both cores in the
effective computation.

With contesting, HET-C achieves an average
speedup of 34% over HOM. In contrast, without con-
testing, HET-C achieves an average speedup of 11%
over HOM. Therefore, contesting has roughly tripled
the single-thread performance advantage of heterogene-
ity in this system. HET-C was primarily designed with

heavy-loading of the system in mind. Thus, contesting
can be viewed as a technique that provides robustness to
heterogeneity – allowing a system to be primarily de-
signed for heavy loading, yet not compromise single-
thread performance when the system is lightly loaded
(this issue is further addressed in the next section).

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

cra
fty

ha
r. m

ea
n

in
st

r.
pe

r t
im

e-
un

it
(IP

T)

HOM HET-C, no contesting HET-C, contesting

Figure 12. Performance of each benchmark on
HOM, HET-C without contesting, and HET-C
with contesting.

7. Discussion

7.1. Combination of core types for contesting

Section 6 considered clear-cut figures of merit for
the design of a heterogeneous CMP with a constrained
number of core types. However, the truly best design
goal may be more involved. For instance, an issue that
may be of concern is certain benchmarks performing
worse than they would have in a homogeneous system,
despite heterogeneity improving single-thread perform-
ance on the whole. This can be reflected in the figure of
merit by penalizing it when that is the case. Another
issue may be the robustness of the design to perform
well both when the system is loaded (throughput) and
unloaded (single-thread performance). Combining sim-
pler figures of merit can reflect such hybrid design
goals.

The design of a constrained heterogeneous CMP
involves compromises, by virtue of limiting the number
of core types and optimizing for one figure of merit or
the other. The results in Section 6 showed that contest-
ing provides a degree of performance robustness that
compensates for certain side-effects of these compro-
mises. Here we discuss two examples:
o Section 6 showed that a constrained heterogeneous
CMP design improves single-thread performance for
the benchmark suite as a whole compared to a homo-
geneous CMP design, but that specific benchmarks
may nonetheless perform worse. The results showed
that contested-execution of these benchmarks makes
up for this performance deficit.
o The cw-har figure of merit, like the avg and har fig-
ures of merit, tries to steer the design of a constrained
heterogeneous CMP towards higher single-thread per-
formance, but it balances this goal with the need to dis-
tribute job types (benchmarks) evenly among the core
types in anticipation of a heavily loaded system. Thus,
while this figure of merit does exploit application-level
heterogeneity for higher single-thread performance, it
may not do so to the same extent as the other narrower

figures of merit. The results in Section 6 showed that
contesting boosts single-thread performance of the het-
erogeneous CMP that was designed taking into ac-
count heavy loading (HET-C), compensating for any
deficit with respect to the other designs (HET-A, HET-
B). Thus, for systems that observe periods of heavy
loading, HET-C with contesting as an available (but
optional) mode of execution is a better design point
than the other considered CMPs, because it is more
robust, handling both periods of heavy and light load-
ing well.

7.2. Customizing cores for contesting

Cores that are customized for application-level per-
formance are not necessarily suitable for fine-grain re-
gions of code. Architectural contesting will provide its
greatest advantage when the cores are customized not
for applications, but for fine-grain regions of code. In
other words, the true single-thread performance poten-
tial of contesting can only be achieved when the cores
are customized with contesting in mind. On the other
hand, cores that are customized for fine-grain regions of
code-will not necessarily be the best for application-
level performance. Thus, a heterogeneous CMP consist-
ing of such cores may hamper the benefit of “lower
hanging fruit”: throughput improvement.

Determining the best core designs for contesting is
much more complex than determining the best core de-
sign for an application, as the different core designs
need to be explored together in contesting pairs (or con-
testing trios, etc.) – resulting in an explosion in an al-
ready vast overall design space. In addition, conducting
design exploration across this design-space is a slower
process, as measuring the performance of design points
involves simulation of contested execution (which is
more time-consuming than simulation of conventional
execution).

7.3. Contesting vs. more core types

We introduce a fourth constrained heterogeneous
CMP design, HET-D, which is comprised of three core
types instead of just two. The har figure of merit was
used to select the three core types (maximizes har-
monic-mean IPT of the benchmarks). HET-D is com-
prised of the customized cores of twolf, crafty, and mcf.

For each benchmark, Figure 13 compares the per-
formance of contesting between the two core types of
HET-C (“HET-C, contesting”) to the performance of
executing the benchmark on the most suitable core type
of HET-D (“HET-D, no contesting”). In addition, the
performance of executing the benchmark on its own
customized core (“HET-ALL, no contesting”) is shown
for comparison. These results show that, on average,
contesting between only two core types can yield as
much single-thread performance enhancement as a het-
erogeneous system with all eleven core types (and typi-
cally more for a majority of benchmarks), and slightly
more than a system with three core types.

Therefore, in terms of maximizing single-thread
performance, contesting may be a more cost-effective
approach than increasing the number of core types in
the system.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

cra
fty

ha
r. m

ea
n

in
st

ru
ct

io
ns

 p
er

 ti
m

e-
un

it

HET-D, no contesting HET-ALL, no contesting HET-C, contesting

Figure 13. Comparison of contesting between
two core types vs. exploiting more core types.

8. Summary

This paper showed that workload behavior tends to
vary considerably at fine granularities. Architectural
contesting leverages the differently-designed cores in a
heterogeneous multi-core to automatically and fluidly
transfer effective execution to the most suitable core,
exploiting workload variations that are too fine-grain to
be handled by previous adaptational and migrational
approaches.

In addition to evaluating two-way contesting in a
relatively unconstrained heterogeneous multi-core (as
many core types as benchmarks), the paper explored the
interplay between contesting and the number of core
types in more constrained heterogeneous multi-core
designs. This exposed the broader issue of constrained
heterogeneous multi-core design and how it influences,
and may be influenced by, contesting.

9. Acknowledgments

We thank Dean Tullsen and the anonymous re-
viewers for their valuable feedback on improving this
paper. This research was supported by NSF grants No.
CCF-0429843 and CCF-0811707, and generous funding
from Intel and IBM. Any opinions, findings, and con-
clusions or recommendations expressed herein are those
of the authors and do not necessarily reflect the views of
the National Science Foundation.

10. References

[1] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi,
K. I. Farkas, “Single-ISA Heterogeneous Multi-Core Archi-
tectures for Multithreaded Workload Performance,” 31st Int’l
Symposium on Computer Architecture, June 2004.
[2] A. Dhodapkar, J. E. Smith, “Managing Multi-
Configuration Hardware via Dynamic Working Set Analysis,”
29th Int’l Symposium on Computer Architecture, May 2002.
[3] K. Sundaramoorthy, Z. Purser, E. Rotenberg, “Slip-
stream Processors: Improving both Performance and Fault
Tolerance,” 9th Int’l Conference on Architectural Support for
Programming Languages and Operating Systems, Nov. 2000.
[4] D. Albonesi. “Dynamic IPC/clock rate optimization,”
25th Int’l Symposium on Computer Architecture, July 1998.
[5] D. Ponomarev, G. Kucuk, O. Ergin, K. Ghose, P. Kogge,
“Energy-Efficient Issue Queue Design,” IEEE Transactions
on Very Large Scale Integration Systems, 11(5), Oct. 2003.

[6] D. Folegnani, A. Gonzalez, “Energy-Effective Issue
Logic,” 28th Int’l Symposium on Computer Architecture, July
2001.
[7] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, T.
Vijaykumar, “An Integrated Circuit/Architecture Approach to
Reducing Leakage in Deep-submicron High-performance
Caches,” 7th Int’l Symposium on High-Performance Com-
puter Architecture, Jan. 2001.
[8] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu,
S. Dwarkadas, “Memory Hierarchy Reconfiguration for En-
ergy and Performance in General-Purpose Processor Architec-
tures,” 33rd Int’l Symposium on Microarchitecture, Dec.
2000.
[9] D. H. Albonesi et al. “Dynamically Tuning Processor
Resources with Adaptive Processing,” IEEE Computer,
36(12), Dec. 2003.
[10] M. Huang, J. Renau, J. Torrellas, “Positional Adaptation
of Processors: Application to Energy Reduction,” 30th Int’l
Symposium on Computer Architecture, June 2003.
[11] S. G. Dropsho, G. Semeraro, D. H. Albonesi, G.
Magklis, M. L. Scott, “Dynamically Trading Frequency for
Complexity in a GALS Microprocessor,” 37th Int’l Sympo-
sium on Microarchitecture, Dec. 2004.
[12] D. Burger, S. Kaxiras, J. R. Goodman, “DataScalar Ar-
chitectures,” 24th Int’l Symposium on Computer Architecture,
June 1997.
[13] L. Chen, D.H. Albonesi, S. Dropsho, “Dynamically
Matching ILP Characteristics via a Heterogeneous Clustered
Microarchitecture,” IBM Watson Conf. on the Interaction
Between Architecture, Circuits, and Compilers, Oct. 2004.
[14] R. Kumar, D. M. Tullsen, N. P. Jouppi, “Core Architec-
ture Optimization for Heterogeneous Chip Multiprocessors,”
Int’l Conferenceon Parallel Architectures and Compilation
Techniques, Sep. 2006.

[15] B. Greskamp, J. Torrellas, “Paceline: Safely Overclock-
ing to Improve CMP Performance under Parameter Varia-
tion,” 6th Int’l Conference on Parallel Architectures and
Compilation Techniques, Sep. 2007.
[16] T. Sherwood, E. Perelman, G. Hamerly, B. Calder,
“Automatically Characterizing Large Scale Program Behav-
ior,” 10th Int’l Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Oct. 2002.
[17] E. Rotenberg, “AR-SMT: A Microarchitectural Ap-
proach to Fault Tolerance in Microprocessors,” 29th Int’l
Symposium on Fault-Tolerant Computing, June 1999.
[18] S. K. Reinhardt, S. S. Mukherjee, “Transient Fault De-
tection via Simultaneous Multithreading,” 27th Int’l Sympo-
sium on Computer Architecture, June 2000.
[19] H. H. Najaf-abadi, E Rotenberg, “Configurational Work-
load Characterization,” Int’l Symposium on Performance
Analysis of Systems and Software, April 2008.
[20] H. H. Najaf-abadi, E. Rotenberg, “Architectural Contest-
ing: Exposing and Exploiting Temperamental Behavior,” 1st
Reconfigurable and Adaptive Architecture Workshop, Dec.
2006.
[21] T. Pering, R. Broderson, “Energy Efficient Voltage Scal-
ing for Real-Time Operating Systems,” 4th Real-Time Tech-
nology and Applications Symposium, June 1998.
[22] H. Zhou, “Dual-Core Execution: Building a Highly Scal-
able Single-Thread Instruction Window,” 14th Int’l Confer-
ence on Parallel Architectures and Compilation Techniques,
Sep. 2005.
[23] S. Hauck, A. DeHon, “Reconfigurable Computing: The
Theory and Practice of FPGA-Based Computing,” Morgan
Kaufman, 2008.
[24] E. Larson, S. Chatterjee, T. Austin, “The MASE Mi-
croarchitecture Simulation Environment,” Int’l Symposium on
Performance Analysis of Systems and Software, June 2001.

Appendix A:
The microarchitecture configurations of core types customized for individual SPEC2000 integer benchmarks, and
the performance of each benchmark when executed on each core type [19]. Each column represents the customized
configuration of a benchmark.

 bzip crafty gap gcc gzip mcf parser perl twolf vortex vpr
bzip 3.15 2.02 1.73 2.41 2.11 2.56 2.09 2.03 3.05 2.24 2.95

crafty 0.78 2.31 1.15 2.11 1.91 0.48 1.97 2.06 1.29 2.12 1.30
gap 1.39 2.75 3.02 2.60 2.92 0.89 2.89 2.79 2.00 2.47 2.05
gcc 1.17 2.17 1.42 2.27 2.03 0.75 2.02 1.63 1.79 2.06 1.80
gzip 1.78 2.56 2.02 2.88 3.13 1.28 3.01 2.14 2.39 2.57 2.37
mcf 0.74 0.40 0.30 0.45 0.29 0.93 0.32 0.41 0.52 0.42 0.52

parser 1.86 2.11 2.19 2.08 2.47 1.32 2.62 1.86 2.39 2.15 2.30
perl 0.85 2.02 0.90 1.81 1.67 0.54 1.65 2.07 1.32 1.81 1.30
twolf 1.65 0.98 0.81 1.26 0.88 1.18 1.10 0.91 1.83 1.16 1.77

vortex 1.68 2.98 2.55 3.09 2.91 1.07 3.41 2.78 2.61 3.43 2.54
vpr 1.56 1.33 1.13 1.72 1.09 1.05 1.36 1.29 2.00 1.51 2.09

No. of cycles for memory access 112 321 173 186 198 120 198 321 172 213 172
No. of pipeline stage of the front-end 4 12 6 7 7 4 7 12 6 8 6
Dispatch, issue, and commit width 5 8 4 4 4 3 4 5 5 7 5
ROB size 512 64 128 256 64 1024 512 256 512 512 256
Issue queue size 64 32 32 32 32 64 32 32 64 32 64
Min. lat. for awakening of dep. Instr. 0 3 1 1 1 0 1 3 1 2 1
Pipeline depth of Scheduler/Reg-file 1 3 1 2 1 1 2 4 2 4 2
Clock period 0.49 0.19 0.33 0.31 0.29 0.45 0.29 0.19 0.33 0.27 0.3
L1D associativity 2 1 1 1 1 2 1 1 8 4 2
L1D block-size 32 8 8 8 128 128 64 8 64 32 32
L1D no. of sets 1k 16k 2k 32k 256 1k 2k 2k 128 1k 128
L1D access latency 2 5 2 4 3 5 3 3 3 5 2
L2D associativity 4 16 4 8 1 4 8 16 4 16 8
L2D block-size 64 64 256 64 128 128 512 64 128 128 128
L2d no. of sets 8k 128 128 1k 4k 8k 32 128 2k 128 1k
L2D access latency 15 7 4 6 5 27 12 7 12 6 12
LS-queue size 128 64 256 256 128 64 256 128 256 256 64

