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Abstract 
 

This paper presents results showing that workload 
behavior tends to vary considerably at granularities of 
less than a thousand instructions. If it were possible to 
adjust the microarchitecture to suit the workload be-
havior at such rates, significant single-thread perform-
ance enhancement would be achievable. However, pre-
vious techniques are too sluggish to be able to effec-
tively respond to such fine-grain change. 

An approach is proposed that exploits the multi-
core trend to enable swift adjustment in the employed 
microarchitecture upon variation in workload behav-
ior. A number of cores that are each custom-designed 
for optimum performance under a class of workloads 
concurrently execute code in a leader-follower ar-
rangement. In this manner, effective execution auto-
matically and fluidly transfers to the most suitable mi-
croarchitecture as the workload behavior varies. We 
refer to this approach as architectural contesting. 

Two-way contesting yields an average speedup of 
15% (maximum speedup of 25%) over a benchmark’s 
own customized core. The paper also explores the in-
terplay between contesting and the number of core 
types available in the heterogeneous multi-core. This 
exposes the broader issue of constrained heterogeneous 
multi-core design and how it influences, and may be 
influenced by, contesting. 
 
1. Introduction 
 

A major impediment to the effectiveness of mi-
croarchitectural techniques is their high dependence on 
the workload behavior. It is for this reason that previous 
studies have proposed techniques that enable the em-
ployed microarchitecture to dynamically change and 
become more suitable for the immediate workload be-
havior. Such techniques can be broadly categorized as 
either adaptational or migrational approaches. Adapta-
tional approaches are based on a single processor de-
sign with adjustable design features (e.g., [9]). Migra-
tional approaches are based on a number of differently 
designed processing cores, i.e., a heterogeneous multi-
core (e.g., [14]). 

Regardless of the approach, the rate at which the 
employed architecture can be effectively changed de-
pends on the rate at which 1) change in workload be-
havior can be detected, 2) the most suitable architecture 
for the new code region can be determined, and 3) the 

change can be performed. The challenge with adapta-
tional techniques is in determining when and how the 
architecture should change. Similarly, the challenge 
with migrational techniques is in determining when and 
to which core execution should be transferred. 

In this paper, we show that the speed of adjusting 
to change in workload behavior that is essential for high 
performance enhancement, is too fine-grain to be 
achieved with prior approaches. However, the availabil-
ity of multiple cores can be exploited to enable the 
speedy transfer of execution to the most suitable archi-
tecture. In the proposed approach, code is simultane-
ously executed on a number of cores, each architected 
for optimum performance under a different class of 
workload behavior. With each core broadcasting its 
instruction results to the other cores, completion of in-
structions can be expedited in cores that are not suitable 
for the immediate code region. Thus, upon change in 
the workload behavior, the core that is most suitable for 
the new workload behavior will be able to automatically 
take the lead. In other words, detecting changes in 
workload behavior, determining the best architectural 
configuration, and transferring execution to that con-
figuration, all take place automatically and fluidly with 
minimal latency. We refer to this technique as architec-
tural contesting (or simply contesting). 

Contesting is orthogonal to other sources of single-
thread performance enhancement, as it exploits a unique 
source of performance enhancement, namely, fine-grain 
customization. Moreover, like other redundant thread-
ing architectures, it can be employed on a need-to-have 
basis, providing robustness in how resources are em-
ployed (throughput or single-thread performance) and 
how performance and power are balanced. 

In the next section, the benefit of being able to 
change the processor configuration at different rates is 
examined. In Section 3, prior related work is outlined 
and relevant issues discussed. Section 4 discusses an 
implementation of architectural contesting. Section 5.1 
describes the simulator, benchmarks, and the methodol-
ogy for finding application-level customized cores for 
the SPEC2000 integer benchmarks. These benchmark-
customized cores form the palette of core types for de-
signing the various heterogeneous CMPs used in this 
paper. Section 5.2 presents results and analysis of 2-way 
contesting (contesting between two cores) assuming all 
core types are available in the CMP. Section 6 evaluates 
contesting in the context of more constrained heteroge-
neous CMP designs that have fewer core types. This 
requires an in-depth analysis of different figures of 
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merit for guiding the selection of core types to be in-
cluded in the CMP. Continuing where Section 6 leaves 
off, Section 7 discusses the subtle yet important inter-
play between contesting and the broader issue of de-
signing constrained heterogeneous CMPs. Section 8 
concludes the paper. 

Below are some highlights from the results and 
analysis presented in Sections 5, 6, and 7: 
o 2-way contesting yields an average speedup of 15% 
(maximum speedup of 25%) over a benchmark’s own 
customized core. 
o For most benchmarks, most of the performance en-
hancement of contesting comes from heterogeneity in 
the microarchitecture, although the benefit of heteroge-
neity in the L2 caches is noticeable in a few cases. For 
both sources, it is contesting that enables this heteroge-
neity to be exploited at a fine granularity. 
o The speedup of contesting is even more pronounced 
in constrained heterogeneous CMPs: yielding an aver-
age speedup of 22% compared to executing the bench-
mark on the most suitable available core. The availabil-
ity of fewer core types reduces the benefit of applica-
tion-level heterogeneity. Contesting can compensates 
for this deficit. 
o Compared to the best homogeneous CMP design, a 
constrained heterogeneous CMP design achieves an 
average speedup of 11% without contesting and 34% 
with contesting. In other words, contesting triples the 
single-thread performance advantage of heterogeneity in 
this system. 
o Compared to the best homogeneous CMP design, 
contesting between only two core types yields the same 
or higher single-thread performance enhancement as 
executing on the best of three core types.  
 

2. Motivation: The speed of change 
 

For each SPEC2000 integer benchmark we evalu-
ate the ability to switch execution between two microar-
chitectural configurations. The configurations are cho-
sen from among eleven configurations, each customized 
for one of the benchmarks. They were extracted through 
a simulated annealing exploration process for 70nm 
technology (see section 5 for further details).  

The execution of each benchmark’s 100-million in-
struction Simpoint [16] was simulated on the custom-
ized configuration of each benchmark and the number 
of cycles to retire every 20 dynamic instructions was 
logged. Then, for each benchmark and every combina-
tion of two configurations, every 20-instruction region 
was considered to be retired at the rate of the faster of 
the two for that region – while factoring in the clock 
periods. The time spent in each region was then aggre-
gated to determine the total execution time, and from 
that the best two configurations for each benchmark. 
The same process was repeated for 40-instruction re-
gions, by summing the execution time of neighboring 
20-instruction regions. The whole process was repeated 
for regions of up to 83 million instructions. 

Figure 1 illustrates the speedup attained for each 
benchmark over the performance of its own customized 
architecture by switching execution between two core 
configurations at different rates. Also indicated in these 
graphs are the two configurations that provided the best 

speedup at each granularity. The different data-point 
symbols indicate different two-core combinations. 
While the best pair of cores for switching execution 
between rarely varies across different granularities for 
benchmarks such as bzip, it is highly dependent on the 
granularity of switching in benchmarks such as perl. At 
the coarsest granularity (i.e. the whole Simpoint), each 
benchmark achieves its best performance on its own 
customized configuration and attains no speedup. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Percentage speedup of switching 
execution between two different configurations 
at different granularities, over the performance 
of the benchmark’s own customized configura-
tion. 

These results illustrate that the greatest potential of 
being able to dynamically adjust the microarchitecture 
to the workload is attainable at granularities of less than 
a thousand instructions. While the benchmarks gcc and 
gzip attain a modest portion of their maximum speedup 
in coarser granularities, most benchmarks display little 
or no performance enhancement with coarser switching 
of the microarchitecture. The knee in the curve in most 
of these benchmarks occurs near the 1280-instruction 
granularity. For instance the graph for average speedup 
displays a mere 5% speedup for granularities in this 
range, while displaying up to ~25% speedup for finer 
granularities. Previously proposed approaches to dy-
namically adjusting the architecture to the workload are 
unable to exploit such fine-grain change in workload 
behavior. 
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In most cases the customized microarchitecture of a 
benchmark is among the best two cores to switch execu-
tion between. However, for twolf, the benchmark that 
attains the largest fine-grain speedup, the customized 
architectures of vortex and parser are the best two. This 
is notable as an application-level customized architec-
ture is forced to compromise performance in fine-grain 
regions in order to attain good overall performance. 
This infers that switching execution between architec-
tures that are custom designed for applications may not 
necessarily provide the best performance enhancement 
from fine-grain switching. Nevertheless, these architec-
tures are good candidates for improving application-
level performance and multi-programming throughput – 
issues of general importance in a CMP design. 
 

3. Related work and discussion 
 

The slipstream paradigm [3] employs two simulta-
neous execution streams of the same code that interact 
to improve overall single-thread performance. One exe-
cution stream is expedited through speculatively skip-
ping ineffectual work, but needs to be checked by a 
redundant stream. However, the redundant stream itself 
is also expedited as the speculative stream passes it 
highly accurate branch and value predictions. More 
recent related work is the paceline leader-checker mi-
croachitecture [15]. In this approach a leader-core runs 
the thread at a higher-than-rated frequency, while pass-
ing execution hints and prefetches to a safely-clocked 
checker core.  

In both these techniques, the leading core is fixed 
(paceline occasionally swaps cores’ roles for tempera-
ture control) and is expedited in a manner that needs to 
be checked for correctness, thus the need for forwarding 
instruction results to a checker. In contesting however, 
the leading core varies depending on the workload be-
havior, and gains lead purely because it is more suitable 
for the immediate region of code. Thus, there is no need 
for it to be checked. Instruction results are forwarded to 
the other cores not for checking, but rather to keep them 
from falling behind so they can take lead as swiftly as 
possible when the workload behavior changes. 

The datascalar paradigm [12] enables single thread 
performance enhancement through enabling the distri-
bution of the program data-set across the local memory 
of multiple cores. Frequency scaling techniques [21] are 
also related work in that they provide variability in the 
performance-power tradeoff. 

This paper culminates our precursor proposal [20], 
which cursorily evaluated contesting with little architec-
tural diversity (two processor widths). 
 

3.1. Changing the microarchitecture 
 

One approach to enabling change in the employed 
microarchitecture is to have an adaptable microarchitec-
ture. However, it is generally infeasible to maintain a 
balanced pipeline as individual architectural units are 
scaled. This imbalance is inevitable due to the fact that 
all microarchitectural units are tied to a common pipe-
line structure. 

Reconfigurable computing [23] exploits field-
programmable technology to build processors that can 

fundamentally transform their architecture. Such ap-
proaches can provide abundant architectural diversity. 
However, the implementation of a specific architecture 
in reconfigurable technology is prone to severe sub-
optimal fixed-configuration performance. 

A different approach is to employ multiple process-
ing cores with different designs. Kumar et al. investi-
gate the use of heterogeneous multi-core architectures 
[1]. They show that the incorporation of processors that 
have a range of high to low complexity (and perform-
ance) in a constrained die area can result in greater 
throughput for multi-threaded workloads. In more re-
cent work, they find “non-monotonic” architectural di-
versity to result in better throughput enhancement [14]. 
 

3.2. Determining the best microarchitecture 
 

A large range of prior work has studied different 
approaches to enable aspects of a processor microarchi-
tecture to change and become more suitable for the im-
mediate workload behavior in order to achieve better 
power efficiency. Ponomarev et al. [5] and Folengnani 
et al. [6] propose approaches to learning the optimum 
issue queue size, and Yang et al. [7] propose cache 
miss-rate as a metric for determining when to downsize 
or upsize an adaptable I-cache. 

In Complexity Adaptive Processing (CAPs) [4], a 
single processor is architected such that the tradeoff 
between IPC and clock-rate can be dynamically altered. 
An essential component of the CAP architecture is the 
“configuration control” unit which selects the optimal 
configuration for the immediate workload through a 
heuristic learning technique or profiling information. 
Dhodapkar and Smith [2] and Balasubramonian and 
Albonesi [8] propose tuning processes for identifying 
the best-suited configuration for the immediate code. 
Temporal approaches, such as the Rochester algorithm 
[8] or signature based approaches [2], require lengthy 
tuning processes. Positional approaches [10] enable 
faster adaptation, and have been found to be more effec-
tive, yet they are unsuitable for fine-grain switching due 
to the drastic increase in storage requirement. 

Dropsho et al. [11] propose the separation of mi-
croarchitectural units, in what is referred to as the Glob-
ally-Asynchronous Locally-Synchronous (GALS) de-
sign. In this approach, different units are asynchronous 
to each other, thus allowing each to be scaled independ-
ently. This allows for more predictability in the effect of 
independently scaled units on overall performance. 
Thus, it relieves the system of the need for an exhaus-
tive tuning process that tries out different configura-
tions.  

Chen et al. [13] investigate the potential of employ-
ing pipelines of different widths and dynamically direct-
ing work to them based on local ILP. They use the par-
allelism metrics gathered from a dynamic Data Depend-
ence Tracking mechanism to steer windows of instruc-
tions to suitable pipelines. In order to avoid most of the 
inter-cluster penalty, they limit switching between clus-
ters to coarse granularities and continuously forward 
values to the disabled pipeline. However, data depend-
ence tracking takes a two-prong view of the microarchi-
tectural design space, consisting of either simple pipe-
lines that can be clocked at high frequencies or wide 



superscalars that can be clocked at lower frequencies.  
In reality, a large range of microarchitectural parame-
ters affect overall performance. After all, even a wide 
superscalar processor can be clocked at a high fre-
quency if it is pipelined deeply. 
 

4. Implementation 
 

The implementation of a contesting system resem-
bles other redundant-execution leader-follower architec-
tures, such as Slipstream [3], SRT [18], AR-SMT [17], 
DCE [22], Paceline [15] and DataScalar [12]. The main 
novelty of contesting is not in the employed mecha-
nisms, but rather the purpose for which they are em-
ployed. This section describes the implementation of a 
contesting system. While the description is generalized 
for N-way contesting, the subsequent results section is 
for a 2-way contesting system. 

Figure 2 illustrates an architectural contesting 
multi-core system. The four cores, A, B, C, and D, con-
currently attempt to execute the same code. We use 
Core C in the figure to explain the mechanics of con-
testing. 

 
Figure 2. A generalized architectural contesting 
multi-core system. 

4.1. Leveraging results from other cores 
 
4.1.1. Global result buses. A core broadcasts the re-
sults of its retired instructions to the other cores via its 
own global result bus (GRB). For example, Core C has 
its own outgoing GRB. Its GRB has three sinks, at 
Cores A, B, and D. 

Conversely, Core C receives results from three in-
coming GRBs, the GRBs of Cores A, B, and D. Since 
Core C may have a different clock frequency from the 
other cores, synchronizing queues, borrowed from re-
cent GALS proposals [11], are used to interface Core C 

with its three incoming GRBs. Results from the three 
incoming GRBs are then transferred to three result  
FIFOs within Core C. 
 
4.1.2. Pop counters and fetch counter. Core C main-
tains a “pop counter” for each of its three result FIFOs, 
as shown in Figure 3. The pop counter of a result FIFO 
is incremented each time Core C pops a result from it. 
For example, the pop counter for result FIFO A is 106, 
meaning that the results of 106 retired instructions from 
Core A have been popped. The implication is that the 
head-entry of result FIFO A contains (or will contain) 
the result of retired instruction #107 from Core A. Ef-
fectively, from the values of the pop counters A, B, and 
D, we can infer the logical positions in the dynamic 
instruction stream of the head-entries of the result FI-
FOs A, B, and D. Their logical positions are explicitly 
shown in Figure 3 by their horizontal placement along 
the retired dynamic instruction stream (which is shown 
at the top of the diagram). As shown, the head-entry of 
result FIFO A is currently at retired instruction #107 
and the head-entries of result FIFOs B and D are both at 
retired instruction #102. 
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Figure 3. Example where Core C does not trail. 

Core C also maintains a single “fetch counter” that 
indicates how many correct instructions (those that will 
ultimately be retired) it has fetched. (The fetch counter 
may be temporarily incorrect due to a mispredicted 
branch in Core C. This issue is handled at the end of 
this subsection.) Effectively, from the value of the fetch 
counter, we can infer where the most recently fetched 
instruction, at the tail-entry of Core C’s instruction win-
dow, is logically positioned within the dynamic instruc-
tion stream. As before, the logical position of Core C’s 
instruction window (all instructions that have been 
fetched but not yet retired) is explicitly shown in Figure 
3 by its horizontal placement along the retired dynamic 
instruction stream. In the example Scenario #1, the fetch 
counter contains 109, therefore, the newest instruction 
at the tail-entry of Core C’s instruction window is to-be-
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retired instruction #109 (assuming the fetch unit is on 
the correct path). 

By comparing its fetch counter to the maximum of 
its three pop counters, Core C can determine whether or 
not it is trailing the most advanced result FIFO. There 
are only two possible scenarios: 
1. Scenario #1: In Figure 3, result FIFO A leads the 

other two result FIFOs because it has the highest pop 
counter, 106. The fetch counter, 109, is higher still. 
This means Core C is not trailing and cannot be ac-
celerated by any of the other cores’ results. When 
Core C fetches the next instruction, #110, none of the 
result FIFOs is advanced enough in the dynamic in-
struction stream to provide a result for it. If this next 
instruction is a branch, it must be predicted and exe-
cuted. If it is a register-producing instruction, it must 
execute to produce its value. As long as the fetch 
counter is greater than the maximum pop counter, late 
results are popped and discarded from all result FI-
FOs as soon as these results are received from the 
GRBs. 

2. Scenario #2: Core C’s lead over the most advanced 
result FIFO may erode. This erosion reaches a turning 
point when the fetch counter equals the maximum 
pop counter, as shown in Figure 4 (the trailing result 
FIFOs B and D are not shown). At this turning point, 
Core C’s fetch unit and the head-entry of the most 
advanced result FIFO are logically at the same in-
struction in the dynamic instruction stream. In Figure 
4, the next instruction to be fetched by Core C is 
#127, which happens to be the instruction for which 
the head-entry of result FIFO A contains a result. 
This is no coincidence: it is because the A pop 
counter (number of instructions popped from result 
FIFO A) and the fetch counter (number of correct in-
structions fetched by Core C) match. A communica-
tion channel is established from result FIFO A to 
Core C’s fetch unit. Now, instead of popping and dis-
carding late results from result FIFO A as soon as 
they arrive, the FIFO is popped when Core C’s fetch 
unit fetches the next instruction (causing both the A 
pop counter and the fetch counter to increment, there-
fore, they remain equal). The popped result is paired 
with the newly fetched instruction. If the result FIFO 
A is empty when the next instruction is fetched, how-
ever, it simply means that Core C is no longer trailing 
and the tables turn again to Scenario #1 above. 

 
The fetch counter may be speculative due to 

branches. Core C’s fetch counter is guaranteed to be 
correct when it is trailing (Scenario #2) because known 
branch outcomes are available from the result FIFO A 
(no mispredictions). On the other hand, it is not guaran-
teed to be correct when Core C is not trailing because 
the fetch unit must predict branches as usual. If a branch 
is mispredicted, the fetch counter is temporarily incor-
rect because it counts incorrect instructions that are not 
ultimately retired. This is dealt with simply by check-
pointing the fetch counter at every branch. When a mis-
predicted branch executes, the fetch counter is restored 
to its correct value representing instructions up to and 
including the branch. 
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Figure 4. Example where Core C trails. 
A subtle corner case arises when Core C is not 

trailing, its fetch unit mispredicts a branch, and then a 
retired instance of the branch is received in the most 
advanced result FIFO before the branch is resolved by 
Core C itself. Earlier, we explained that when Core C is 
not trailing (Scenario #1), all received results are im-
mediately popped and discarded from the result FIFOs. 
To handle the corner case, however, received branches 
are not summarily discarded. Instead, after popping a 
branch and incrementing the pop counter, the value of 
the pop counter is compared against the checkpointed 
fetch counter of the oldest unresolved branch in Core C. 
If they match and the branch is found to be mispredicted 
(by checking its prediction against the popped branch 
outcome), then the mispredicted branch is resolved 
early. Note that the fetch counter will be restored to its 
checkpointed value which naturally matches the pop 
counter. This means Core C is now perceived to be 
trailing (fetch counter = maximum pop counter), and the 
table has turned from Scenario #1 to Scenario #2. This 
corner case is depicted in Figure 5. 
 
4.1.3. Injecting results. As explained in the previous 
subsection, when Core C is trailing, it pairs popped re-
sults from result FIFO A with its fetched instructions. A 
result is used in lieu of executing the instruction. The 
instruction is completed early in the fetch stage, if it is a 
branch, or in the rename stage, if it is a register-
producing instruction. Early completion in the fetch 
stage is implemented by overriding the branch predic-
tion logic. Early completion in the rename stage is im-
plemented by directly writing a value into the destina-
tion physical register. This requires stealing register file 
write ports from the execution core. The transfer of 
ownership of write ports, from the writeback stage to 
the rename stage, is gradual. Any already-issued in-
structions will be able to write their values in the write-
back stage as promised by the scheduler. Over the span 
of several cycles, fewer write ports are allocated to the 
scheduler and more write ports are allocated to the re-
name stage. This is consistent with the fact that the issue 
queue is gradually emptied as no new instructions are 
dispatched into it. When it is completely drained, all 
write ports are allocated to the rename stage. 

A more straightforward alternative to this port real-
location scheme is to continue dispatching instructions 
into the issue queue but to mark them as immediately 
ready, since they already have their destination values 



with them: they will issue expeditiously (free of all data 
dependences) and write their values in the writeback 
stage like usual. 
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Figure 5. Corner case: Resolving misprediction 
early causes transition from Scenario #1 to #2. 
4.1.4. Lagging distance. The fetch counter and pop 
counters only need to be large enough to represent the 
maximum number of dynamic instructions that is al-
lowed to separate the leading and lagging cores. 

By leveraging the result FIFOs, execution in the 
lagging cores will never fall too far behind. Thus, when 
the code phase changes, all the cores will be contested 
fairly in the new phase without the need for actually 
detecting the change of phase, and the core that is best 
suited will automatically be able to take lead.  

How far behind a lagging core is depends on the 
physical propagation delay between cores. When the 
characteristics of the code change, it is this lagging dis-
tance that a core needs to catch-up on before it can be-
come the head of the pack and commence effective exe-
cution. Note that it is not necessary for all the lagging 
cores to receive the result of a retired instruction in the 
same cycle. This issue is of convenience, as different 
cores may be at differing distances from each other. 

Although the frequencies and retirement widths of 
the cores may differ, the peak rate at which instruction 
results are retired by any core – in instructions-per-
second (IPS) – must be sustainable by all other cores. 
That is, the peak retirement rate (in IPS) of any core 
must be less than or equal to the peak rate (in IPS) at 
which instruction results can be written to the register 
file and memory in any other core. Without this condi-
tion, a lagging core may unboundedly fall behind, re-
sulting in excessive catch-up time and therefore defeat-

ing the purpose of architectural contesting. We refer to 
a lagging core that cannot keep-up with the leading core 
as a saturated lagger. This scenario can be dealt with 
simply by disabling contesting mode for the saturated 
lagger. 
 

4.2. Handling stores 
 

Stores are redundantly performed in the private 
cache levels of the cores. The private cache levels are 
configured to use the write-through policy to simplify 
contesting (this does not preclude using the write-back 
policy in non-contesting modes). To prevent lagging 
cores from incorrectly observing future stores of less-
lagging cores, stores stop short of writing through to the 
shared cache level. Here, we employ a synchronizing 
store queue similar to SRT’s store queue [18]. 

In SRT, the store queue waits for both instances of 
a store (the leading and trailing threads’ instances), be-
fore performing a single merged instance to the L1 
cache, and loads from the leading thread search the 
store queue in addition to the L1 cache. Similarly, the 
synchronizing store queue employed for contesting 
buffers stores and keeps track of which cores have pri-
vately performed each store. When the oldest store has 
been privately performed by all cores, a single merged 
instance is performed to the shared cache level. 
 

4.3. Handling exceptions 
 

A synchronous exception (e.g., error, TLB miss, 
system call) will be detected by all the contesting cores, 
although not at the same time. We could take the same 
approach as previous work [17][3] that designates one 
core to handle the exception (terminate threads in the 
non-designated cores, service the exception in the des-
ignated core, and refork threads in the non-designated 
cores including preloading TLB entries). We advocate a 
new approach: a redundant-thread-aware parallelized 
exception handler. An explicitly-parallel software han-
dler can perform the necessary coordination to achieve 
correct results for all of the cores, avoiding the over-
head of terminating and reforking threads. A core calls 
the exception handler when it reaches the exception. 
The handler increments a semaphore and checks its 
value to determine whether or not all contesting cores 
have reached the exception. If no, the handler on this 
core goes to sleep. If yes, the handler wakes up all the 
other sleeping handlers and they may coordinate han-
dling the exception on all the cores. 

For asynchronous exceptions caused by external in-
terrupts, one of the cores is designated to listen for ex-
ternal interrupts. In this case, it is difficult to stop all 
redundant threads at the same point without resorting to 
an elaborate hardware handshaking protocol, and so the 
first approach is used. 
 

5. Measuring up to the very best 
 

5.1. Methodology 
 

The sim-mase simulator from the Simplescalar 
V4.0 toolset [24] has been modified to model the con-



testing implementation described above. The simulator 
was modified to enable time-synchronous execution of 
multiple simulator instances that model different pro-
portional clock periods. In order to model time-
synchronous execution, the simulator instances perform 
handshaking in a round-robin arrangement. Receiving a 
handshaking signal signifies the passing of a base time-
unit (specifically 0.01ns). Each simulator instance exe-
cutes an iteration of its top-level simulation loop upon 
the passing of as many time-units as there are in the 
clock period it is modeling. For example, a simulator 
instance modeling a 3GHz core will execute one itera-
tion of its top-level simulation loop every 33 time-units.  

The benchmarks used throughout are the 100-
million instruction SimPoints [16] of the SPEC2000 
integer benchmarks (except for eon, which we were 
unable to compile with the Simplescalar compiler). 

In this study, we consider the pool of prospective 
cores in the heterogeneous CMP to consist of cores that 
are customized for individual SPEC2000 integer 
benchmarks in 70nm technology. We used the XpScalar 
design-space exploration framework [19], which em-
ploys a simulated-annealing exploration process, to 
arrive at the benchmark-customized cores. XpScalar 
varies multiple design parameters, including superscalar 
width, register-file/ROB size, issue-queue size, load-
store queue size, L1 and L2 cache configurations, and 
clock frequency. The depth of pipelining of various 
architectural units/stages is consistent with the proces-
sor’s frequency and the complexity of these units/stages. 
The customized core of each benchmark and its per-
formance with respect to all benchmarks is reproduced 
in Appendix A. 
 

5.2. Results 
 

We limit our evaluation to 2-way architectural con-
testing (contesting between two cores). An issue of im-
portance is the considered core-to-core latency, or the 
time it takes for an instruction result to travel from one 
core to another. In this part of the study, a one nanosec-
ond (three cycles of a 3 Ghz processor) core-to-core 
latency is considered. The effect of scaling this latency 
is measured in Subsection 5.2.2.  

Figure 6 shows the performance (instructions per 
time, IPT) of contesting, for each benchmark. For each 
benchmark, the two cores that are contested (from 
among all benchmark-customized cores) are those two 
which give the highest performance when contested; the 
pair of contesting cores used by a given benchmark is 
labeled above its bar in the graph. For comparison, the 
IPT of each benchmark on its own customized core is 
also shown. Contesting yields an average speedup of 
15% over a benchmark’s own customized core. The 
largest speedup is attained for the benchmark gcc at 
25%. Four out of the eleven studied benchmarks attain 
more than 18% speedup.  

The averaged results in Figure 1 (of Section 2) 
show that achieving speedups in the range of 15% over 
a benchmark’s own customized configuration requires 
the ability to switch execution between configurations at 
a rate of around 100 instructions. This number of in-
structions is proportional to the number of instructions 
in the pipeline of an average configuration at any in-

stance. However, using previously proposed techniques 
to detect changes in workload behavior, determine a 
suitable configuration, and transfer execution to it, can 
most probably be achieved at a rate of a few thousand 
instructions at the very best – which drastically dimin-
ishes the benefit of being able to adjust the microarchi-
tecture. 
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Figure 6. IPT of each benchmark for 1) execu-
tion on its own customized core and 2) con-
testing between two cores that maximize con-
tested-execution performance (the two con-
tested cores are shown above the bars). 
5.2.1. The source of performance enhancement. A 
question that may arise is how integral heterogeneity in 
the microarchitecture of the cores is to this performance 
enhancement, and whether the origin is heterogeneity in 
the cache configurations. Differentiating the heteroge-
neity in the caches from that in the microachitecture of 
the cores can provide insight into the origin of the per-
formance enhancement. However, note that the best 
cache configuration for a workload is not independent 
of other microarchitectural design factors. 

In order to address this question, each benchmark is 
executed with contesting between two cores that differ 
only in their L2 caches. One of the cores is one of the 
best two cores for contesting. The other is the same 
core, but with its L2 cache (configuration and access 
latency) replaced with that of the other best core for 
contesting. For example, bzip was originally contested 
between the customized cores of bzip and parser (con-
testing these two cores yielded the highest perform-
ance). For the modified experiment, bzip is contested 
between two bzip cores, except that one of these other-
wise identical cores has the L2 cache of the parser core. 
This experiment is repeated with two parser cores, one 
of which has the L2 cache of bzip. The higher perform-
ing trial of these two trials is used. 

Figure 7 shows the speedup of contesting. The total 
height of each bar represents the speedup of contesting 
in the original experiment (heterogeneity in both the 
microarchitecture and L2 cache). The bottom fraction of 
each bar represents the speedup of contesting in the 
modified experiment, isolating the performance en-
hancement due to heterogeneous L2 caches. These re-
sults show that, for most of the benchmarks (other than 
gcc and parser), only a minor portion of the perform-
ance enhancement can be attributed to only heterogene-
ity in the L2 cache. All the same, it is contesting that 
enables this heterogeneity to be exploited at a fine 
granularity. 
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Figure 7. Isolating the contribution of L2 cache 
heterogeneity to the performance enhance-
ment of contesting. 
5.2.2. The effect of core-to-core latency. Figure 8 
shows the effect that the core-to-core latency has on the 
average speedup of contesting between the best two 
cores for each benchmark over the performance of the 
benchmark on its own customized core. These results 
show a decrease in the performance enhancement of 
contesting as this latency increases. At a latency of 
100ns the average performance benefit reduces to 6%. 
These results show the importance of the propagation 
delay of the GRB. 

Moreover, these results also show that different 
workloads are affected differently by the core-to-core 
latency. For instance, while the speedup of a benchmark 
such as bzip degrades by less than 1% when the latency 
increases from 1ns to 2ns, that of gzip decreases by 
more than 35% percent for the same increase in latency. 
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Figure 8. Speedup of contesting for different 
core-to-core latencies over customized cores. 

6. Evaluation with limited core types 
 

Section 5 evaluates the performance enhancement 
attainable from contesting between the best two core 
types for fine-grain switching, for each benchmark. 
Since the best pair of contesting cores differs from one 
benchmark to the next, the previous evaluation implies 
that the customized core types of all benchmarks are 
available in the heterogeneous CMP. However, there 
may be fewer core types in a realistic heterogeneous 
CMP. In Section 6.1, we first address general heteroge-
neous CMP design and what influences the best set of 
core types to employ when the number of core types is 
limited. In Section 6.2, we apply these principles to 
design heterogeneous CMPs with only two core types. 
Finally, in Section 6.3, we evaluate the performance 

enhancement of contesting between the cores of the 
systematically-designed dual-core-type heterogeneous 
CMPs from Section 6.2. 
 

6.1. The design goal 
 

The best combination of microarchitectural con-
figurations to employ in a heterogeneous system de-
pends on the design goal. 

If the design goal is to minimize the total execution 
time of a set of benchmarks when submitted to the sys-
tem one-by-one – as is customary in single-core mi-
croarchitecture evaluation – a representative figure of 
merit is the harmonic-mean of the performance (instruc-
tions per time unit, IPT) of all benchmarks when each is 
executed on the most suitable core available. This figure 
of merit is improved if the benchmarks are weighted by 
the frequency with which they occur in the system. 
Without these weights, benchmarks that run infre-
quently but have long run-times may have dispropor-
tionate influence on the perceived-best core types.  

Benchmark weights may not be available, however. 
In this situation, it may be desirable to use the average 
(arithmetic-mean) of IPTs as the figure of merit. Aver-
age IPT focuses on raw throughput instead of total time, 
which may lead to more performance-robust core types 
in the face of uncertain benchmark frequencies. 

Neither of these metrics (harmonic-mean IPT and 
average IPT) accounts for core-contention between jobs 
and may thus bring about imbalance in the number of 
benchmarks better suited for the different core types. 
For example, if the design goal is simply to maximize 
either the harmonic-mean IPT or average IPT for ten 
benchmarks on two core types, the ultimate CMP design 
may be guided toward one core type that is favored by 
nine benchmarks and one core type that is favored by 
one benchmark. While this CMP design is optimum 
when there is no contention between jobs, it is not nec-
essarily optimum when there is contention.  

If contention between jobs is a concern, the best 
combination of core types to employ in the system is 
influenced by 1) the rate and distribution of job submis-
sions and 2) how jobs are scheduled. Below, we de-
velop a figure of merit that accounts for contention, 
which is based on two simplifying assumptions regard-
ing job distribution and scheduling, respectively. First, 
we consider a uniform distribution of job submissions. 
That is, jobs have an equal probability of belonging to 
one of the considered workload types (i.e., one of the 
benchmarks). Unevenness in the distribution can be 
modeled by assigning importance weights that are pro-
portional to the probability of a workload type being 
submitted to the system. Burstiness in the arrival of jobs 
of the same workload type decreases the value of het-
erogeneity. Second, we consider a scheduling policy 
that directs a job to the core type for which it is best 
suited, even if all cores of that type are currently busy 
and the job must be queued, instead of directing it to the 
best available core. This policy is reasonable if all cores 
are heavily loaded. 

In this setting, the arrival rate of jobs at the job-
queue of a specific core will be proportional to the 
number of job types that prefer that core. Therefore, 
according to Little’s law, the average number of jobs in 



a job-queue will also be proportional to the number of 
job types that prefer the corresponding core. Therefore, 
a representative figure of merit can be attained by divid-
ing the performance (IPT) of each benchmark when 
executed on the most suitable core type in the CMP 
design by the number of benchmarks that share the core 
type, and then taking the harmonic mean. We refer to 
this figure of merit as the contention-weighted har-
monic-mean IPT. 
 

6.2. Exploring combinations of cores 
 

The best combination of core types to employ in a 
heterogeneous CMP is determined by searching all the 
possible combinations of core types for one that maxi-
mizes the considered figure of merit. Once again we 
limit the pool of prospective core types to the custom-
ized cores for individual SPEC2000 integer bench-
marks. In addition, the number of core types in the het-
erogeneous CMP is limited to only two. This does not 
limit the total number of cores, that is, conceivably 
there could be multiple instances of each core type. 

Since we separately consider three different figures 
of merit – average IPT (avg), harmonic-mean IPT (har), 
and contention-weighted harmonic-mean IPT (cw-har), 
as discussed in the previous section – we arrive at three 
different heterogeneous CMP designs, HET-A, HET-B, 
and HET-C, respectively. These designs are displayed 
in the first three rows of Table 1. The table shows which 
two core types comprise each of HET-A, HET-B, and 
HET-C. A core type is identified by the name of the 
benchmark for which it is customized, e.g., the custom-
ized core type for the gcc benchmark is named “gcc”. 
HET-A is comprised of the parser and twolf core types, 
HET-B is comprised of the gcc and mcf core types, and 
HET-C is comprised of the bzip and crafty core types. 

Since this paper is ultimately concerned with sin-
gle-thread performance (the benefit of contesting), re-
gardless of the figure of merit used to arrive at a CMP 
design, the last column of Table 1 shows the harmonic-
mean of the IPTs of all benchmarks when each is run on 
the most suitable core of a given design. Since HET-B 
was designed using this figure of merit to begin with, as 
expected, it has the highest harmonic-mean IPT among 
HET-A, HET-B, and HET-C. 

Two other designs are included in the last two rows 
of Table 1. The first of these, HOM, is a homogeneous 
CMP design with only one core type, namely, the core 
type that gives the best performance on average for all 
benchmarks. Of all the customized core types, the gcc 
core type is the best overall (it maximizes both average 
IPT and harmonic-mean IPT). The last design, HET-
ALL, is a heterogeneous CMP comprised of all the cus-
tomized core types, so that each benchmark runs on its 
customized core. 

While the gcc core is the best individual performer 
among the benchmark-customized cores, it is possible 
for there to be an even better core that is explicitly cus-
tomized for the benchmark suite as a whole. We con-
ducted an exploration of the design space for the aggre-
gate performance across all benchmarks using the 
XpScalar exploration process [19]. The customized 
core that was attained provided negligible overall per-
formance enhancement over that of the gcc core. 

Table 1. Five CMP designs and their perform-
ance. 

CMP 
design 

 

Designed 
based on which 
figure of merit? 

Constituent core types 
 

Harmonic-mean 
of IPT 

 

HET-A avg parser & twolf cores 1.76 
HET-B har gcc & mcf cores 1.88 
HET-C cw-har bzip & crafty cores 1.87 
HOM avg or har gcc core 1.57 

HET-ALL Not applicable customized cores of all 
benchmarks 2.1 

 

The performance results in the last column of Table 
1 show that, when exploited at the application level, 
unconstrained heterogeneity can provide up to a 34% 
increase in harmonic-mean IPT (HET-ALL compared 
to HOM). With only two core types, HET-C provides a 
19% increase in harmonic-mean IPT (HET-C compared 
to HOM). In other experiments, not shown here, we 
determined that the overall performance of a heteroge-
neous CMP with four core types is within 2% of the 
performance of HET-ALL. 

Figure 9 displays the IPTs of individual bench-
marks on the five CMP designs of Table 1. For a given 
CMP design, a benchmark is run on the most suitable 
core type available in that design. These results show 
how the choice of available core types impacts individ-
ual benchmark performance. 
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Figure 9. IPT for each benchmark when exe-
cuted on the most suitable core type available 
in the CMP, for five CMP designs. 

In this section, we evaluate the single-thread per-
formance enhancement of contesting on top of the HET-
A, HET-B, and HET-C CMP designs from the previous 
section. The chief purpose of this exercise is to study 
contesting in the context of a heterogeneous CMP that 
was systematically designed to exploit application-level 
heterogeneity with a limited number of core types, and 
not explicitly for the purpose of fine-grain switching 
within an application. This is the expected setting in 
which contesting might be deployed. 

Figure 10 shows the performance (instructions per 
time unit, IPT) of each benchmark, for three scenarios: 
1) execution on HOM (“HOM”), 2) execution on the 
most suitable core type of HET-A (“HET-A, no contest-
ing”), and 3) contested execution between the two core 
types of HET-A (“HET-A, contesting”). 

Contesting on HET-A yields an average speedup of 
16% and a maximum speedup of 41% (for gcc) com-
pared to not contesting. An interesting result is that, 
while the benchmarks gcc, perl, and crafty observe 
lower performance on the better of the two cores of 



HET-A compared to the overall best core provided by 
HOM, their contested execution with them more than 
compensates for the deficit. 
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Figure 10. Performance of each benchmark on 
HOM, HET-A without contesting, and HET-A 
with contesting. 

Figure 11 shows the IPT of each benchmark under 
the same three scenarios, except that the HET-B CMP 
design is used instead of the HET-A CMP design. From 
Table 1, HET-B is comprised of the gcc and mcf core 
types. Due to the long clock period of the mcf core, it 
tends to become a saturated lagger in the contested exe-
cution of half of the benchmarks, resulting in little bene-
fit for these. Nevertheless, contesting on HET-B yields 
an average speedup of 13% and a maximum speedup of 
39% (for twolf) compared to not contesting. 
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Figure 11. Performance of each benchmark on 
HOM, HET-B without contesting, and HET-B 
with contesting. 

The highest overall speedup is attained for contest-
ing between the two core types of the HET-C CMP de-
sign (featuring the bzip and crafty core types). Figure 12 
shows the results for HET-C. Contesting on HET-C 
yields an average speedup of 22% and a maximum 
speedup of 50% (for vpr) compared to not contesting. 
For the benchmarks gzip, vortex, and vpr, contesting 
prevents performance from dipping below that of the 
overall best core provided by HOM, and even boosts 
performance significantly above it. These speedups are 
attained through active participation of both cores in the 
effective computation. 

With contesting, HET-C achieves an average 
speedup of 34% over HOM. In contrast, without con-
testing, HET-C achieves an average speedup of 11% 
over HOM. Therefore, contesting has roughly tripled 
the single-thread performance advantage of heterogene-
ity in this system. HET-C was primarily designed with 

heavy-loading of the system in mind. Thus, contesting 
can be viewed as a technique that provides robustness to 
heterogeneity – allowing a system to be primarily de-
signed for heavy loading, yet not compromise single-
thread performance when the system is lightly loaded 
(this issue is further addressed in the next section). 
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Figure 12. Performance of each benchmark on 
HOM, HET-C without contesting, and HET-C 
with contesting. 

7. Discussion 
 

7.1. Combination of core types for contesting 
 

Section 6 considered clear-cut figures of merit for 
the design of a heterogeneous CMP with a constrained 
number of core types. However, the truly best design 
goal may be more involved. For instance, an issue that 
may be of concern is certain benchmarks performing 
worse than they would have in a homogeneous system, 
despite heterogeneity improving single-thread perform-
ance on the whole. This can be reflected in the figure of 
merit by penalizing it when that is the case. Another 
issue may be the robustness of the design to perform 
well both when the system is loaded (throughput) and 
unloaded (single-thread performance). Combining sim-
pler figures of merit can reflect such hybrid design 
goals. 

The design of a constrained heterogeneous CMP 
involves compromises, by virtue of limiting the number 
of core types and optimizing for one figure of merit or 
the other. The results in Section 6 showed that contest-
ing provides a degree of performance robustness that 
compensates for certain side-effects of these compro-
mises. Here we discuss two examples: 
o Section 6 showed that a constrained heterogeneous 
CMP design improves single-thread performance for 
the benchmark suite as a whole compared to a homo-
geneous CMP design, but that specific benchmarks 
may nonetheless perform worse. The results showed 
that contested-execution of these benchmarks makes 
up for this performance deficit. 
o The cw-har figure of merit, like the avg and har fig-
ures of merit, tries to steer the design of a constrained 
heterogeneous CMP towards higher single-thread per-
formance, but it balances this goal with the need to dis-
tribute job types (benchmarks) evenly among the core 
types in anticipation of a heavily loaded system. Thus, 
while this figure of merit does exploit application-level 
heterogeneity for higher single-thread performance, it 
may not do so to the same extent as the other narrower 



figures of merit. The results in Section 6 showed that 
contesting boosts single-thread performance of the het-
erogeneous CMP that was designed taking into ac-
count heavy loading (HET-C), compensating for any 
deficit with respect to the other designs (HET-A, HET-
B). Thus, for systems that observe periods of heavy 
loading, HET-C with contesting as an available (but 
optional) mode of execution is a better design point 
than the other considered CMPs, because it is more 
robust, handling both periods of heavy and light load-
ing well. 

 

7.2. Customizing cores for contesting 
 

Cores that are customized for application-level per-
formance are not necessarily suitable for fine-grain re-
gions of code. Architectural contesting will provide its 
greatest advantage when the cores are customized not 
for applications, but for fine-grain regions of code. In 
other words, the true single-thread performance poten-
tial of contesting can only be achieved when the cores 
are customized with contesting in mind. On the other 
hand, cores that are customized for fine-grain regions of 
code-will not necessarily be the best for application-
level performance. Thus, a heterogeneous CMP consist-
ing of such cores may hamper the benefit of “lower 
hanging fruit”: throughput improvement. 

Determining the best core designs for contesting is 
much more complex than determining the best core de-
sign for an application, as the different core designs 
need to be explored together in contesting pairs (or con-
testing trios, etc.) – resulting in an explosion in an al-
ready vast overall design space. In addition, conducting 
design exploration across this design-space is a slower 
process, as measuring the performance of design points 
involves simulation of contested execution (which is 
more time-consuming than simulation of conventional 
execution). 
 

7.3. Contesting vs. more core types 
 

We introduce a fourth constrained heterogeneous 
CMP design, HET-D, which is comprised of three core 
types instead of just two. The har figure of merit was 
used to select the three core types (maximizes har-
monic-mean IPT of the benchmarks). HET-D is com-
prised of the customized cores of twolf, crafty, and mcf. 

For each benchmark, Figure 13 compares the per-
formance of contesting between the two core types of 
HET-C (“HET-C, contesting”) to the performance of 
executing the benchmark on the most suitable core type 
of HET-D (“HET-D, no contesting”). In addition, the 
performance of executing the benchmark on its own 
customized core (“HET-ALL, no contesting”) is shown 
for comparison. These results show that, on average, 
contesting between only two core types can yield as 
much single-thread performance enhancement as a het-
erogeneous system with all eleven core types (and typi-
cally more for a majority of benchmarks), and slightly 
more than a system with three core types. 

Therefore, in terms of maximizing single-thread 
performance, contesting may be a more cost-effective 
approach than increasing the number of core types in 
the system. 
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Figure 13. Comparison of contesting between 
two core types vs. exploiting more core types. 

8. Summary 
 

This paper showed that workload behavior tends to 
vary considerably at fine granularities. Architectural 
contesting leverages the differently-designed cores in a 
heterogeneous multi-core to automatically and fluidly 
transfer effective execution to the most suitable core, 
exploiting workload variations that are too fine-grain to 
be handled by previous adaptational and migrational 
approaches. 

In addition to evaluating two-way contesting in a 
relatively unconstrained heterogeneous multi-core (as 
many core types as benchmarks), the paper explored the 
interplay between contesting and the number of core 
types in more constrained heterogeneous multi-core 
designs. This exposed the broader issue of constrained 
heterogeneous multi-core design and how it influences, 
and may be influenced by, contesting. 
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Appendix A:  
The microarchitecture configurations of core types customized for individual SPEC2000 integer benchmarks, and 
the performance of each benchmark when executed on each core type [19]. Each column represents the customized 
configuration of a benchmark. 

 bzip crafty gap gcc gzip mcf parser perl twolf vortex vpr 
bzip 3.15 2.02 1.73 2.41 2.11 2.56 2.09 2.03 3.05 2.24 2.95 

crafty 0.78 2.31 1.15 2.11 1.91 0.48 1.97 2.06 1.29 2.12 1.30 
gap 1.39 2.75 3.02 2.60 2.92 0.89 2.89 2.79 2.00 2.47 2.05 
gcc 1.17 2.17 1.42 2.27 2.03 0.75 2.02 1.63 1.79 2.06 1.80 
gzip 1.78 2.56 2.02 2.88 3.13 1.28 3.01 2.14 2.39 2.57 2.37 
mcf 0.74 0.40 0.30 0.45 0.29 0.93 0.32 0.41 0.52 0.42 0.52 

parser 1.86 2.11 2.19 2.08 2.47 1.32 2.62 1.86 2.39 2.15 2.30 
perl 0.85 2.02 0.90 1.81 1.67 0.54 1.65 2.07 1.32 1.81 1.30 
twolf 1.65 0.98 0.81 1.26 0.88 1.18 1.10 0.91 1.83 1.16 1.77 

vortex 1.68 2.98 2.55 3.09 2.91 1.07 3.41 2.78 2.61 3.43 2.54 
vpr 1.56 1.33 1.13 1.72 1.09 1.05 1.36 1.29 2.00 1.51 2.09 

            
No. of cycles for memory access 112 321 173 186 198 120 198 321 172 213 172 
No. of pipeline stage of the front-end 4 12 6 7 7 4 7 12 6 8 6 
Dispatch, issue, and commit width 5 8 4 4 4 3 4 5 5 7 5 
ROB size 512 64 128 256 64 1024 512 256 512 512 256 
Issue queue size 64 32 32 32 32 64 32 32 64 32 64 
Min. lat. for awakening of dep. Instr. 0 3 1 1 1 0 1 3 1 2 1 
Pipeline depth of Scheduler/Reg-file  1 3 1 2 1 1 2 4 2 4 2 
Clock period 0.49 0.19 0.33 0.31 0.29 0.45 0.29 0.19 0.33 0.27 0.3 
L1D associativity 2 1 1 1 1 2 1 1 8 4 2 
L1D block-size 32 8 8 8 128 128 64 8 64 32 32 
L1D no. of sets 1k 16k 2k 32k 256 1k 2k 2k 128 1k 128 
L1D access latency 2 5 2 4 3 5 3 3 3 5 2 
L2D associativity 4 16 4 8 1 4 8 16 4 16 8 
L2D block-size 64 64 256 64 128 128 512 64 128 128 128 
L2d no. of sets 8k 128 128 1k 4k 8k 32 128 2k 128 1k 
L2D access latency 15 7 4 6 5 27 12 7 12 6 12 
LS-queue size 128 64 256 256 128 64 256 128 256 256 64 

 


